содержание

		Стр.
ГЛАВА	А 3. САМОЛЕТНЫЕ НАБЛЮДЕНИЯ	63
3.1	Обшие положения	63
	3.1.1 Определения	63
	3.1.2 Самолетные метеорологические датчики	63
3.2	Лавление и число Маха	65
0.1	3 21 Приемник полного и статического давления	65
	322 Барометрическая высота	65
	3.2.2 Вирометри теский высоти	67
	3.2.3. Число Маха	68
	3 2 3 1 HOODDADADAULOCTL ИЗМАРАЦИЙ	68
3.3	Томпоратура возлуха	60
	2 2 1 Потици полной томпоратуры возлиха	60
	2.2.1.1. Потроимости изморония	70
2 4	5.5.1.1 Погрешности измерения	70
3.4	Скорость и направление ветра	70
2.5	3.4.1 Погрешности измерении	/2
3.5	Влажность	/3
	3.5.1 Погрешность измерений	/3
3.6	Турбулентность	74
	3.6.1 Оценка интенсивности турбулентности в результате	
	вертикальной перегрузки	74
	3.6.1.1 Погрешности измерения	74
	3.6.2 Расчетная эффективная скорость вертикального порыва ветра	74
	3.6.2.1 Погрешности измерений	75
	3.6.3 Скорость диссипации турбулентной энергии	75
	3.6.3.1 EDR, измеряемая с помощью вертикального акселерометра	76
	3.6.3.2 EDR. определяемая по вертикальным сдвигам ветра	76
	3.6.3.3 EDR. рассчитанная по истинной воздушной скорости	77
	3.6.3.4 Погрешности измерений	77
	3 6 3 5 Соотношение между EDR и DEVG	77
37	Облаленение	78
5.7	3 71 Погрешиости измерений	78
2 0	5.7.1 Погрешности измерении борту смолотор	70
5.0		70
	3.6.1 Система передачи метеорологических данных с воздушного судна	70
	3.6.2 Передача Гропосферных метеорологических данных с самолетов	79
	3.8.2.1 Обзор ТАМДАР	79
	3.8.2.2 Относительная влажность и температура	/9
	3.8.2.3 Обнаружение обледенения системой ТАМДАР	81
	3.8.2.4 Обнаружение турбулентности системой ТАМДАР	81
3.9	Другие системы и источники самолетных наблюдений	82
	3.9.1 Система автоматического зависимого наблюдения ИКАО	82
	3.9.2 Новые и разрабатываемые системы	83
	3.9.2.1 Режим расширенного наблюдения — адресный	83
	3.9.2.2 Режим регулярной метеорологической сводки с борта	
	воздушного судна	83
СПРА	ВОЧНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА	84

Cmp.

ГЛАВА З. САМОЛЕТНЫЕ НАБЛЮДЕНИЯ

3.1 ОБЩИЕ ПОЛОЖЕНИЯ

3.1.1 Определения

В настоящей главе описываются методы, используемые для автоматических метеорологических измерений на современных коммерческих воздушных судах, известных под общим названием «самолетные наблюдения». Принципы, описанные в настоящей главе, могут быть использованы для обработки данных на любом адекватно оборудованном приборами воздушном судне в целях определения и разработки систем наблюдений с воздушных судов.

Система наблюдений ВМО, именуемая как «Система передачи метеорологических данных с воздушных судов (АМДАР)», является системой наблюдений с воздушных судов, которая определяется ВМО (WMO, 2013) в качестве системы для удовлетворения метеорологических потребностей, связанных с сообщением метеорологических данных с платформы, расположенной на воздушном судне. Эксплуатация системы АМДАР осуществляется Членами ВМО в рамках соглашения о сотрудничестве с авиакомпаниямипартнерами, и полученные таким образом данные передаются в Глобальную систему телесвязи ВМО. Дополнительная информация имеется в публикации ВМО (WMO, 2003).

АМДАР и другие самолетные системы наблюдений, как правило, эксплуатируются на воздушных судах, оборудованных сложными навигационными и другими зондирующими системами. Имеются датчики для измерения скорости воздушного потока, температуры и давления воздуха. Другие данные, относящиеся к месту положения воздушного судна, ускорению и ориентации, поступают от навигационной системы воздушного судна. На воздушном судне также находятся бортовые компьютеры для управления полетом и навигационные системы, с помощью которых навигационные и метеорологические данные непрерывно обрабатываются на компьютере и передаются в кабину экипажа. В системах наблюдений, находящихся на воздушном судне, они проходят дальнейшую обработку и автоматически вводятся в систему связи воздушного судна для передачи на землю или, в качестве альтернативы, на воздушном судне может использоваться специальный пакет для обработки данных в целях доступа к необработанным данным из систем воздушного судна и независимого расчета метеорологических переменных.

В системах АМДАР эти технические средства используются для составления и передачи метеорологических сводок в режиме реального времени. Обычно эти сообщения содержат данные о скорости и направлении ветра (в горизонтальной плоскости), температуре воздуха, барометрической высоте (высота в стандартной атмосфере, связанная со стандартной изобарической поверхностью), времени наблюдения, фазе полета и местоположении воздушного судна. Если воздушное судно оборудовано должным образом, оно может также сообщать данные о влажности или отношении смеси водяного пара и показателе турбулентности.

Для того чтобы получить данные метеорологических измерений, репрезентативные для свободного воздушного потока вблизи воздушного судна, исходные данные метеорологических наблюдений необходимо подвергнуть существенной коррекции и комплексной обработке. Полное описание всех соответствующих процессов выходит за рамки настоящего Руководства, однако в данной главе приводится изложение принципов со ссылками на дополнительную литературу.

3.1.2 Самолетные метеорологические датчики

Основными датчиками, устанавливаемыми на борту современных воздушных судов, выполняющих коммерческие рейсы, являются приемник полного и статического

давления и датчик полной температуры воздуха (ТАТ). Данные с этих датчиков, а также информация, поступающая от навигационной системы воздушного судна, обычно представляемой одной или сочетанием радионавигационных систем (Глобальная система определения местоположения, ГСОМ), оборудованием для измерения расстояния (ОИР), всенаправленным курсовым радиомаяком УКВ-диапазона (УВР), системой инструментальной посадки и, в некоторых случаях, инерциальной навигационной системой (ИНС), используются для расчета следующих метеорологических параметров:

- a) барометрической высоты $H_{p'}^{1}$ позиции по горизонтали и текущего времени (PALT на рисунке 3.1);
- b) статической температуры воздуха *T*_с (SAT на рисунке 3.1);
- с) скорости ветра |V|;
- d) направления ветра D_w .

На некоторых воздушных судах имеются дополнительные возможности для измерения параметров турбулентности или дополнительные датчики для измерения обледенения на фронтальных поверхностях и/или для измерения относительной влажности воздуха или отношения смеси водяного пара *г*.

Для того, чтобы оценить сложность системы обработки данных, структура приведенного ниже описания представлена в виде потока процесса в типичной операционной системе. Необходимо будет отметить (рисунок 3.1), что рассчитываемые переменные тесно взаимосвязаны.

Рисунок 3.1. Обработка данных с датчика АМДАР.

¹ Барометрическая высота определяется как мера высоты по отношению к стандартному нулевому уровню в 1 013,2 гПа. Переменный эшелон полета (FL) равнозначен барометрическому давлению на всех эшелонах. Барометрическая высота и эшелон полета могут не быть взаимозаменяемыми при указанной высоте воздушного судна, высоте воздушного судна или самолетной высоте, на которой применяются другие определения. Поскольку воздушное судно может совершать полет при уровнях давления выше 1 013,2 гПа (т.е. ниже стандартной плоскости высоты), барометрическая высота (или эшелон полета) могут быть отрицательными.

3.2 ДАВЛЕНИЕ И ЧИСЛО МАХА

3.2.1 Приемник полного и статического давления

Приемник полного и статического давления (рисунок 3.2) размещается в невозмущенном потоке воздуха вне пограничного слоя воздушного судна и измеряет общее давление (статистическое давление плюс полное или динамическое давление). Некоторые из этих датчиков могут также измерять статическое давление (т. е. давление в невозмущенном потоке воздуха, в идеальном случае давление невозмущенного окружающего воздуха), однако на большинстве авиалайнеров, обычно используемых для АМДАР, статическое давление измеряется через отверстия, расположенные в боковой части корпуса воздушного судна. Параметры давления измеряются электронными датчиками и передаются в центральный блок, обеспечивающий алгоритмы для аэродинамических поправок (корректировка «встроенной ошибки»), и на заключительном этапе поступают в ЭВМ обработки данных о параметрах атмосферы (ADC). ADC по результатам этих двух измерений рассчитывает барометрическую высоту, статическую температуру и число Маха.

3.2.2 Барометрическая высота

Данные измерения статического давления обычно не передаются в АМДАР, а преобразуются в АDC в эквивалентную высоту на основе Международной стандартной атмосферы (ISO, 2007). Стандартная атмосфера (см. рисунок 3.3) предполагает линейное уменьшение температуры с высотой на 6,5 °C на каждый километр до высоты в 11 км

Рисунок 3.2. Типовая конфигурация для измерения статического давления и полного давления на воздушном судне. Статическое давление измеряется (см. отметку «S») либо в отверстиях по обеим сторонам фюзеляжа, либо в боковых отверстиях датчика полного-статического давления. Общее давление измеряется в направленном вперед отверстии датчиков полного давления или датчиков полного-статического давления (см. отметку «P»), установленных на фюзеляже в нескольких метрах ниже носовой части.

Рисунок 3.3. Международная стандартная атмосфера.

или 36 089 футов² при температуре и давлении над средним уровнем моря в 15 °С и 1 013,25 гПа соответственно. Предполагается, что в слое от 11 до 20 км температура остается постоянной и равной –56,5 °С.

При значении барометрической высоты H_p , равном или меньше 36 089 футов, статическое давление (p_s) связано с H_p с помощью следующего выражения:

$$p_s = 1\,013,25 \cdot \left(1 - 6,8756 \cdot 10^{-6} \cdot H_p\right)^{5,2559} \tag{3.1}$$

при H_p — в единицах футов и p_s — в единицах гПа. Например, если H_p составляет 30 000 футов, то p_s = 300,9 гПа.

Приведенное выше выражение 3.1 может быть использовано для вычисления статического давления на основе сообщенной изобарической высоты, при условии, что в бортовом программном обеспечении значение статического давления было скорректировано только для эффектов аэродинамического происхождения (встроенная ошибка), и если отметка шкалы высотомера на воздушном судне (нулевое исходное значение) установлена по стандарту ИКАО для давления, приведенного к среднему уровню моря (1 013,25 гПа). Процедуры применения навигационных приборов предусматривают также настройку нулевой отметки шкалы высотомера и на другие исходные уровни. Например, высотомер может быть установлен по атмосферному давлению на уровне аэродрома (барометрическое давление на высоте поля аэродрома, QFE) или QNH (значение QFE уменьшено к давлению на уровне моря путем использования стандартной атмосферы), которое является эталонным давлением по шкале стандартной атмосферы, таким, которое указано на высоте аэродрома на уровне конкретной посадочной полосы. Изобарическая высота, сообщаемая бортовым программным обеспечением АМДАР, должна всегда быть привязана к стандарту ИКАО для давления, приведенного к среднему уровню моря.

Для использования в кабине пилотов «показанная» высота H_i (барометрическая высота над средним уровнем моря (СУМ)) рассчитывается по барометрической высоте (H_p) минус начальное значение высоты, установленное на шкале высотомера по стандартной атмосфере (H_p), плюс высота исходного давления над СУМ ($E_{\rm Ref}$). Общее выражение выглядит следующим образом:

$$H_i = H_p - H_r + E_{\text{Ref}}$$
(3.2)

² Несмотря на общую политику использования единиц системы СИ, фут используется для обозначения высоты в этой главе, соблюдая общепринятую практику в авиационном сообществе.

$$H_r = \left[1 - \left(\frac{p_r}{1\,013,25}\right)^{0,190\,26}\right] \cdot 145\,442 \tag{3.3}$$

где H_r , H_i и $E_{\rm Ref}$ даются в футах, а p_r — в единицах гПа; p_r — давление, установленное на шкале высотомера, такое как:

QNH, при $E_{\text{Ref}} = 0$ футов над средним уровнем моря

или

QFE, при $E_{\rm Ref}$ = высота поля над средним уровнем моря.

Заметим, что *H*_r = 0, если *p*_r = 1 013,25 гПа.

Например:

- а) если начальная отметка шкалы высотомера установлена на значение QNH, составляющее 1 000,0 гПа, и показанная высота равна 9 335 футов, H_p = 9 335 футов + 364 фута = 9 699 футов и p_s = 705 гПа;
- b) если шкала установлена на значение QFE, составляющее 990 гПа, ниже высота на уровне аэродрома составляет 276 футов и природная высота равна 9 058 футов, то H_p = H_i + H_r (QFE) – E_{Ref} = 9 058 футов + 641 фут – 276 футов = 9 423 фута, а значение QNH будет равно 1 000 гПа.

Однако для целей АМДАР следует выбирать такой параметр высоты, который исключительно основан на аэродинамически чистом статическом давлении без какойлибо ссылки на QNH или QFE.

Если H_p больше 36 089 футов (11 км), то статическое давление выражается формулой:

$$p_{s} = 226, 32 \cdot e^{\frac{36\,089 - H_{p}}{20\,806}}$$

$$H_{p} = 36\,089 - 20\,806 \cdot \ln\left(\frac{p_{s}}{226, 32}\right)$$
(3.4)

или

где H_p приводится в единицах футов, а p_s — в единицах гПа. Например, если H_p составляет 40 000 футов, то p_s = 187,5 гПа.

3.2.2.1 Неопределенность измерений

Источники неопределенности включают следующее:

- а) неопределенность калибровки;
- b) краткосрочная случайная погрешность приборов;
- с) дрейф калибровочных значений;
- d) неопределенность воздействия или неопределенность статического источника (заложенная).

Поскольку обеспечение безопасного эшелонирования воздушных судов имеет крайне важное значение, эти неопределенности корректируются в максимально возможной степени в ADC. Неопределенность статического источника, которая является функцией места размещения приемника давления, числа Маха и веса воздушного судна, определяется эмпирически во время летного испытания. Неопределенность давления определяется по сообщаемым значениям высот.

Возможной причиной времени задержки поступления данных в системе АМДАР является радиосвязь между воздушным судном и землей. Этот процесс связи регулируется международными стандартами, такими как ARINC 620, AOSFRS (Спецификация функциональных требований в отношении бортовых программных средств АМДАР) или ААА, которая поддерживает ACMS (Система мониторинга состояния самолета) ACARS AMDAR. В более ранних вариантах этих стандартов барометрические высоты сообщались с дискретностью в сотни футов, что для крейсерского эшелона полета эквивалентно приблизительно 1,5 гПа. Это составляет примерно 0,1 % от полномасштабного измерения давления. При точности приборов, составляющей в лучшем случае порядка 1 гПа, неопределенность измерения статического давления в крейсерском эшелоне, полученная посредством преобразования барометрической высоты, составляет около 2 гПа. Для высоты на уровне моря разрешение эквивалентно примерно 3,7 гПа, результатом чего является неопределенность порядка 4 гПа. В последних вариантах бортового программного обеспечения АМДАР высота сообщается в десятках футов, и в этом случае неопределенность, обусловленная погрешностью, связанной с кодированием, является боле низкой по сравнению с оставшейся неопределенностью измерения. Воздушное судно, оборудованное АМДАР, соответствует правилам и требованиям сокращенного минимума вертикального эшелонирования (RVSM), изложенными официальными учреждениями в рамках организации воздушного движения (ОВД). От воздушных судов требуется поддержание неопределенности барометрической высоты в 50 м (160 футов) даже в диапазоне высот от 30 000 до 40 000 футов. Таким образом, неопределенность давления должна находиться в пределах ±1,5 гПа, а система контроля качества авиакомпании должна поддерживать точность на этом уровне.

3.2.3 Число Маха

Число Маха (*M* — отношение истинной скорости воздушного потока к скорости звука в спокойной атмосфере) является важным элементом для эксплуатации воздушных судов. В системах АМДАР оно используется для введения поправок в измеренные значения температуры воздуха и скорости воздушного потока. В сухом воздухе скорость звука пропорциональна квадратному корню из абсолютной (статической) температуры *T_s*. Число Маха зависит только от двух параметров, а именно:

a) давление скоростного напора q_c , измеряемое установленными на воздушном судне датчиками полного давления,

И

b) статическое давление *p*_s, измеряемое в определенных местах в боковой части фюзеляжа воздушного судна:

$$M^{2} = \frac{2}{\kappa - 1} \left[\left(\frac{q_{c} + p_{s}}{p_{s}} \right)^{\frac{\kappa - 1}{\kappa}} - 1 \right]$$
(3.5)

где $q_c + p_s$ — общее давление; и κ — соотношение удельных теплоемкостей сухого воздуха (C_p/C_v) .

Дополнительную информацию см. в работах по вопросам аэродинамики воздушных судов, таких как Abbott and von Doenhoff (1959) и Dommasch et al. (1958).

3.2.3.1 Неопределенность измерений

Неопределенность измерений определяется почти полностью неопределенностью основополагающих измерений давления. В нормальном режиме неопределенность производного числа Маха должна быть менее 0,2 %.

3.3 ТЕМПЕРАТУРА ВОЗДУХА

3.3.1 Датчик полной температуры воздуха

Датчик полной температуры ТАТ размещается в невозмущенном воздушном потоке и используется для измерения статической температуры (невозмущенного потока воздуха). Точное измерение температуры воздуха является основой для получения других производных метеорологических элементов. Например, значение температуры используется для расчета истинной скорости воздушного потока и, таким образом, влияет на расчет компонентов скорости ветра. АDC корректирует температуру, фактически измеренную датчиком, используя при этом расчетное значение числа Маха.

Большинство воздушных судов, совершающих коммерческие рейсы, оборудовано датчиками ТАТ — термометрами контактного типа. На рисунке 3.4 показана общая схема такого датчика. Чувствительный элемент датчика представляет собой термометр сопротивления. Защитный кожух предохраняет чувствительный элемент от попадания облачных капель и осадков, однако имеются сообщения о том, что в кучевых облаках на чувствительном элементе появляются капли воды (Lawson and Cooper, 1990). Тем не менее, основной причиной отделения аэродинамических частиц является защита данного элемента против абразивных воздействий.

Важная в термодинамическом плане часть защитного кожуха предназначена для обеспечения практически полного адиабатического преобразования кинетической энергии забранного воздуха во внутреннюю энергию. Скорость воздушного потока должна быть снижена до остаточного значения в датчике в несколько м/с. В этом месте поток воздуха, вступающий в контакт с чувствительным элементом, должен быть свободен от теплообмена с внутренними стенками. Вот почему различные виды защитных кожухов ТАТ оборудованы/имеют в своей конструкции отверстия в стенках вокруг входа в воздухозаборник. Эти отверстия производят всасывающее действие для ограничения внутреннего пограничного слоя. Благодаря этому, теплообмен со стенкой поддерживается

Рисунок 3.4. Типичный пример датчика температуры воздушного судна — датчика полной температуры воздуха (TAT). Внутренняя аэродинамика проектируется таким образом, чтобы торможение потока происходило до момента соприкосновения с датчиком. Соответствующий внутренний пограничный слой сохраняется достаточно малым и, вместе с тем, в стороне от сенсорного элемента, с тем чтобы торможение воздушного потока постоянно происходило в виде чисто адиабатического процесса. Искривление потока используется для сепарации частиц. на достаточно низком уровне для поддержания точности измерений. Даже если выходная кромка защитного кожуха обогревается для борьбы с обледенением, соответствующее увеличение измеряемой температуры — ниже 0,5 К при *M* > 0,3.

Значение температуры (T_r), измеряемое таким датчиком, близко к теоретическому значению T_r , которое было бы получено при идеальном адиабатическом сжатии невозмущенного потока воздуха в аэродинамически идеальной точке заторможенного потока. Соотношение между статической температурой воздуха T_s , которая представляет собой температуру в невозмущенном потоке воздуха, и измеренной температурой T_r , определяется выражением (при этом T как абсолютная температура):

$$\frac{T_r}{T_s} = 1 + \lambda \cdot \frac{\kappa - 1}{2} \cdot M^2$$
(3.6)

где λ — это коэффициент восстановления датчика температуры. Современные датчики ТАТ показывают типичные значения коэффициента восстановления датчика температуры порядка 0,98 для чисел Маха от 0,5 до 0,9. Этот коэффициент, в первую очередь, учитывает эффект частичного торможения воздушного потока и, во-вторых, необходимость измерения передаваемой потоку незначительной образующейся при трении теплоты. Значение этого коэффициента несколько меньше 1. Оно зависит от конструкции защитного кожуха, но также и от числа Маха. На крейсерской скорости при числе Маха 0,85 температура датчика превышает температуру окружающей среды более чем на 30 К.

С более подробной информацией о датчиках ТАТ можно ознакомиться в работе Stickney et al. (1990).

3.3.1.1 Погрешности измерения

Статическая температура является функцией от измеренной датчиком температуры и числа Маха. Как показано выше, число Маха является производным от значений полного давления и статического давления, независимые измерения которых осуществляются с помощью приемника полного и статического давлений. Таким образом, погрешность измерения температуры зависит от трех источников погрешностей помимо погрешностей калибровки и других факторов (например, работы противообледенительного устройства датчика).

Погрешность измерения температуры составляет около 0,4 °C при числе Maxa 0,8, снижаясь при этом до 0,3 °C при малых числах Maxa. При использовании первого варианта стандарта бортового программного обеспечения ARINC 620 температура характеризовалась разрешением в 1 К. Начиная с 1994 г., было предписано ее кодировать в 0,1 К. При смачивании в облаках датчик будет охлаждаться за счет испарения; возникающие при этом дополнительные погрешности будут почти до 3 °C или около этого. При очень низкой воздушной скорости (например, во время взлета) скорость просасывания воздуха через датчик может оказаться недостаточной для поддержания точности измерения. Для преодоления этой проблемы на некоторых воздушных судах применяются датчики с инжекцией воздуха. Как правило, бортовое программное обеспечение следует конфигурировать таким образом, чтобы передача данных не начиналась раньше взлета. Несмотря на сложность применяемой процедуры обработки данных, оперативный опыт показывает, что погрешность измерения средней температуры на крейсерской высоте полета составляет около 1 К.

3.4 СКОРОСТЬ И НАПРАВЛЕНИЕ ВЕТРА

При измерении трехмерного вектора ветра используются данные самолетной навигационной системы (полная комбинация или комплект радионавигационного оборудования, инерционной платформы, магнитного компаса и системы ГСОМ) и системы измерения скорости воздушного потока (компьютер обработки данных о параметрах атмосферы, использующий систему измерения полного и статического давлений плюс датчик ТАТ). Используя эти данные можно определить с высокой степенью точности скорость (V_s) самолета — его скорость относительно земли (путевая скорость), и скорость потока воздуха по отношению к самолету (V_a , истинная воздушная скорость). Вектор ветра (V), соответственно, рассчитывается по навигационному треугольнику:

$$\vec{v} = \vec{v}_g - \vec{v}_a \tag{3.7}$$

Векторы \vec{v}_{o} и \vec{v}_{a} должны быть измерены точно, поскольку, как правило, скорости ветров в

горизонтальной плоскости невелики (порядка 10 м/с) по сравнению с путевой скоростью воздушного судна и истинной скоростью воздушного потока (200–300 м/с). В ранних версиях систем АМДАР путевая скорость для обеспечения дальней навигации рассчитывалась исключительно по данным от инерциальных навигационных систем без какой-либо поддержки со стороны наземных навигационных средств или ГСОМ. Иногда это могло снизить точность вектора скорости самолета относительно земли и вектора скорости ветра приблизительно на несколько метров в секунду. С появлением современных мультисенсорных навигационных систем ситуация с получением оперативных качественных данных улучшилась (Meteorological Service of Canada, 2003). В то же время для трехмерного решения вектора (уравнение 3.7) необходимо измерять не только углы тангажа, крена и рысканья самолета, но также угла атаки, набегающего на самолет воздушного потока и скольжения (рисунок 3.5). При установившемся горизонтальном полете углы тангажа и атаки невелики и их изменениями можно пренебречь. В бортовой системе коммерческих воздушных судов векторный треугольник скорости ветра рассчитывается только в плоскости Х-Ү земной системы координат, а углы атаки и бокового скольжения не измеряются.

Рисунок 3.5. Углы между воздушным судном и земной системой координат, а также воздушным потоком.

Потребность во входных данных сокращается до истинной скорости воздушного потока, угла курса и путевой скорости. Угол курса и путевую скорость получают с помощью навигационной системы. Истинная скорость воздушного потока должна рассчитываться по числу Маха и *T*_c. Компоненты горизонтального ветра (*u*, *v*) определяются по формулам:

$$u = u_g - |\vec{v}_a| \cdot \sin \Psi \tag{3.8}$$

$$v = v_g - \left| \vec{v}_a \right| \cdot \cos \Psi \tag{3.9}$$

где $|\vec{v}_a|$ — величина истинной скорости воздушного потока; Ψ — курс по отношению к направлению на истинный север, позитивный угол по часовой стрелке; и u_g и v_g — компоненты путевой скорости.

3.4.1 Погрешности измерений

Истинная воздушная скорость является функцией числа Маха и *T*_s (SAT на рисунке 3.1):

$$\left|\vec{v}_{a}\right| = 38,867 \cdot M \cdot \sqrt{T_{s}} \tag{3.10}$$

$$\left|\vec{v}_{a}\right| = 38,867 \cdot M \cdot \sqrt{\frac{T_{r}}{1+0,194 \cdot M^{2}}}$$
(3.11)

Так как число Маха и *T_s*, определяются с погрешностями, то суммарная погрешность величины истинной воздушной скорости рассчитывается по формуле:

$$\Delta \left| \vec{v}_a \right| = 38,867 \cdot \Delta M \cdot \sqrt{T_s} + \frac{19,433 \cdot M \cdot \Delta T_s}{\sqrt{T_s}}$$
(3.12)

где $|\vec{v}_a|$ выражается в единицах узла; T_s , T_r — в единицах К; ΔM — погрешность числа Маха, а ΔT_s — погрешность измерения статической температуры.

Отметим, что из уравнения 3.5 следует, что погрешность определения числа Маха вносит вклад в погрешность измерения давления. Если нет грубых ошибок в измерениях температуры, то погрешность в определении числа Маха может быть самой значительной. Например, при погрешности числа Маха, составляющей 0,2 % на крейсерском эшелоне, погрешность измерения воздушной скорости составит около 1 узла (0,5 м/с). Таким образом, при нулевой погрешности навигационной системы предполагается, что погрешность определения вектора ветра составит до 0,5 м/с. При этом следует отметить, что грубые ошибки в измерении температуры приведут к грубым погрешностям в определении скорости ветра.

При оценках погрешности определения скорости ветра ошибки измерения истинной воздушной скорости суммируются с погрешностями инерциальной навигационной системы. Оценки погрешности определения скорости ветра проводятся при предположении о полете самолета с нулевыми углами атаки (никаких углов скольжения на крыло) и нулевом крене, а также об идеально точной установке инерциальной платформы. При значительных углах крена погрешность вектора ветра, пропорциональная истинной воздушной скорости, может быть существенно большей. Углы крена в 10°–20° означают, что фактически угол атаки приводит к угловому отклонению истинной воздушной скорости на 2 м/с. Таким образом, данные о ветре обычно исключаются или, по меньшей мере, маркируются в тех случаях, когда угол крена превышает пороговое значение (обычно 3°-5°). При низких значениях скорости ветра ошибка в определении вектора скорости ветра может привести к значительной погрешности в расчете направления ветра. Таким образом, принимая во внимание наиболее реальные условия полета, суммируя все вышеперечисленные источники погрешностей и учитывая скорость и направление ветра как погрешность вектора, можно предположить, что типовая погрешность определения скорости ветра составит 4-6 узлов (2-3 м/с). Такие оценки соответствуют имеющемуся оперативному опыту измерений (см., например, Nash, 1994).

3.5 **ВЛАЖНОСТЬ**

На научно-исследовательских самолетах и эксплуатируемых воздушных судах, совершающих коммерческие рейсы, используются различные принципы работы датчиков для измерения влажности. Диапазон технологий охватывает такие основанные на поглощении или рассеянии методы, как емкостное поглощение, охлаждаемые зеркала и оптические методы. Прибором, который наиболее широко используется для операций в рамках АМДАР, является измерительное средство, основным элементом которого является регулируемый диодный лазер (РДЛ) (May, 1998; Fleming, 2000, 2003), — система зондирования водяного пара (СЗВП-II). Первоначально технология абсорбционной спектроскопии РДЛ была разработана Лабораторией по изучению струйных течений (ЛСТ) НАСА для использования во время полетов к Марсу, поскольку она обеспечивает высокую точность и исключительную стабильность измерений в течение многих лет. СЗВП-II разработана специально для использования в коммерческой авиации в поддержку АМДАР на основе применения специального метода относительно узкого диапазона абсорбции в инфракрасной области спектра водяного пара. Интенсивность излучения на детекторе связана с испускаемым излучением согласно закону Бера, при котором:

$$I = I_0 \cdot e^{-k x \rho_w} \tag{3.13}$$

где *I* — принимаемый сигнал; *I*₀ — передаваемый сигнал; *k* — массовый коэффициент ослабления; *x* — длина пути излучения в рабочем объеме; ρ_w — абсолютная влажность (плотность водяного пара) в зондируемом объеме. *I*₀, *k* и *x* — это известные характеристики системы. Измерения локального давления и температуры позволяет данной системе учитывать плотность сухого воздуха ρ_d . Сканирование поглощения осуществляется в узком диапазоне длин волн при показателе H₂O около 1,37 мкм. Величина абсолютной влажности в выборочном объеме выводится путем использования метода 2f (May and Webster, 1993). В конечном итоге программно-аппаратное обеспечение системы преобразует необработанный сигнал 2f вместе с данными одновременного измерения температуры и давления в соответствующий итоговый параметр, а именно соотношение компонентов смеси водяного пара, *m*:

$$m = \frac{\rho_w}{\rho_d} \tag{3.14}$$

Сенсорная система является достаточно небольшой для регулируемой установки на коммерческих воздушных судах. За исключением периодов возможных фазовых переходов, параметр *m* сохраняется в сенсорном датчике при внешнем сдвиге давления и температуры. Полученное значение коэффициента смешивания подходит для предоставления информации без учета данных о значениях локального давления и температуры. Такое представление информации удобно для использования в численных атмосферных моделях, в которых используются данные об удельной влажности (которая численно почти неотличима от *m*) в качестве вводимой переменной.

3.5.1 Погрешность измерений

До 2012 г. результатом некоторых оценок климатических камер, а также летных испытаний этой системы спектрометрического измерения влажности являлись две характеристики функционирования приборного оборудования, а именно: при величинах измерений выше пределов обнаружения порядка 4 мг/м³ относительная погрешность находится в диапазоне ±10 %. На высоте давления в 200 гПа соответствующий предел обнаружения при данном коэффициенте смешения составляет 0,02 г/кг (или 30 ppmv). Сравнение этого самолетного метода измерения влажности с современными радиозондами, например Petersen et al. (2011), показывает, что данный датчик соответствует требованиям ВМО в отношении всех диапазонов наблюдений удельной влажности и относительной влажности как на этапе набора высоты, так и снижения.

3.6 ТУРБУЛЕНТНОСТЬ

Турбулентность, в особенности турбулентность ясного неба (при отсутствии облачности), представляет собой важное и потенциально опасное явление для авиации. Хотя маршруты регулярных коммерческих полетов составляются так, чтобы избежать турбулентности, воздушные суда неизбежно сталкиваются с неожиданной болтанкой; при этом отклонения от нормального горизонтального полета могут измеряться с помощью приборов, которые установлены на борту самолетов.

3.6.1 Оценка интенсивности турбулентности в результате вертикальной перегрузки

Вертикальная перегрузка (перпендикулярная горизонтальной плоскости самолета, от которой ведется отсчет) измеряется в инерциальной системе отсчета. Данные о перегрузке самолета выражаются и масштабируются в единицах ускорения свободного падения и могут быть подразделены так, как это показано в таблице. Однако интенсивность турбулентности, влияющей на полет самолета, зависит, главным образом, от воздушной скорости, массы самолета, высоты и характера самой турбулентности. В связи с этим передаваемые с борта самолета сведения о турбулентности, рассчитанные по пику перегрузки в соответствии с приблизительными соотношениями, приведенными в представленной ниже таблице, имеют ограничения по использованию, поскольку зависят от типа самолета, так как влияние отдельного порыва ветра на самолет будет различным для разных самолетов.

Категория турбулентности	Пик перегрузкиª	Код
Отсутствует	Менее 0,15 <i>g</i>	0
Легкая	От 0,15 g to, до, но не включая, 0,5 g	1
Умеренная	От 0,5 <i>g</i> до 1,0 <i>g</i>	2
Сильная	Более 1,0 <i>g</i>	3

Пример кодирования масштаба турбулентности, определяемой по пику перегрузки

а Измеренные перегрузки самолета представляют собой приращение перегрузки по отношению к ускорению свободного падения (1,0 g) и могут быть как положительными, так и отрицательными.

3.6.1.1 Погрешности измерения

Существуют два основных источника погрешности датчиков перегрузки самолета, а именно погрешность определения «нулевого» или эталонного значения перегрузки самолета и погрешность калибровки прибора (измерения). Для большинства самолетов начальной точкой отсчета перегрузки (нуля перегрузки) номинально является +1,0 g, но это значение может обычно изменяться в пределах 3 %. Эта погрешность может быть практически устранена за счет коррекции датчика, выполняемой при стоянке самолета на земле, в результате чего остаточная погрешность (в том числе погрешность измерения) будет составлять около 3 % от измерения (Sherman, 1985).

3.6.2 Расчетная эффективная скорость вертикального порыва ветра

Другой характеристикой турбулентности является расчетная эффективная скорость вертикального порыва ветра (DEVG), определяемая как мгновенная скорость вертикального порыва ветра, которая в проекции на направление среднего горизонтального ветра создает наблюдаемую перегрузку самолета. Результат воздействия порыва ветра на самолет зависит от его массы и некоторых других характеристик, но они учитываются при расчетах, поэтому эффективная скорость порыва ветра не зависит от типа самолета. Эффективная скорость вертикального порыва ветра рассчитывается по следующей формуле (Sherman, 1985):

$$U_{de} = \frac{Am\Delta n}{V_c} \tag{3.15}$$

где U_{dc} — расчетная эффективная скорость порыва ветра; Δn — модуль пика приращения перегрузки воздушного судна от 1 g в единицах g; m — общая масса воздушного судна; V_c — индикаторная воздушная скорость в момент пика ускорения; и A — параметр, который зависит от типа самолета и, в незначительной степени, от его массы, высоты полета и числа Маха.

3.6.2.1 Погрешности измерений

Была проведена оценка погрешностей по каждому из параметров, определяющих величину U_{de} . При установившемся горизонтальном полете эти погрешности, как правило, составляют не более 3 % для каждого параметра, но в экстремальных условиях могут привести к суммарной погрешности в 10–12 %. Исходя из предположения о случайном распределении ошибок, обычная погрешность будет составлять 3 или 4 % от текущего значения U_{de} . Маневры воздушного судна могут привести к значительным значениям вертикальной перегрузки самолета, и наоборот — активные методы управления самолетом уменьшают перегрузку, вызванную порывами ветра, что приводит к существенному занижению значений вертикальной скорости порывов ветра.

3.6.3 Скорость диссипации турбулентной энергии

Скорость диссипации турбулентной энергии ε — это параметр, который определяет интенсивность турбуленции в газообразной среде в количественном выражении. В контексте турбулентности самолета это стандартная практика обозначения параметра $\varepsilon^{1/3}$ как скорость затухания вихря (EDR). Преимущество EDR заключается в том, что этот параметр является независимой от самолета мерой измерения интенсивности атмосферной турбулентности. Существует несколько способов оценки EDR (при помощи акселерометра в отличие от энергии ветра), и эта скорость может оцениваться в принципе вдоль любого направления (хотя обычно используется либо направление по вертикали, либо продольное (вдоль трассы)). Существуют также разные спектральные «модели» турбулентности, которые могут быть использованы для любого из алгоритмов:

$$F_{\nu}(f) = \frac{9\pi}{55V_t} \alpha \, \varepsilon^{2/3} \, L^{5/3} \, \frac{(1 + \frac{3^2}{3} \pi^2 L^2 f^2 / V_t^2)}{(1 + 4\pi^2 L^2 f^2 / V_t^2)^{11/6}}$$
(3.16)

где уравнение 3.16 — это спектральная модель фон Кармана, где *f* — частота (Гц); *V_t* — истинная воздушная скорость воздушного судна (м/с); *а* — эмпирическая постоянная (в данном случает принимается за 1,6), и *L* — параметр масштаба длины турбулентности.

$$F_k(f) = \frac{24\pi}{55V_t} \alpha \,\varepsilon^{2/3} \left(2\pi f \,/\, V_t\right)^{-5/3} \tag{3.17}$$

где уравнение 3.17 — это спектральная модель Колмогорова, которая представляет собой лишь ограничение высокой частоты (уравнение 3.16). В обеих моделях предпринимается попытка описания формы частотного и энергетического спектра данных о ветре. Модель фон Кармана лучше представляет более крупные масштабы, особенно вертикальной скорости, хотя она является более сложной и включает зависящий от ситуации масштаб длины *L* в дополнение к EDR (в квадрате). Измерения, проведенные с научно-исследовательских воздушных судов, показали значения *L* от порядка 300 м до 2 000 м. В большинстве применяемых сегодня алгоритмах используются среднее значение, равное 669 м.

3.6.3.1 **EDR**, измеряемая с помощью вертикального акселерометра

Этот метод, описанный в работе Cornman et al. (1995), основан на параметре перегрузки вертикального ускорения, полученном с помощью инерциальной навигационной системы. Для этого метода используется следующее соотношение (Cornman et al., 1995, equation 21):

$$\varepsilon_{w}^{1/3} = \frac{\hat{\sigma}_{\ddot{z}}}{\left[0, 7V_{t}^{2/3}I(f_{l}, f_{h})\right]^{1/2}}$$
(3.18)

где $\hat{\sigma}_{\ddot{z}}$ — вариация отфильтрованной полосы пропускания нормальной перегрузки; и

I— интеграл отфильтрованной по полосе пропускания передаточной функции воздушного судна *H*; и:

$$I(f_l, f_h) = \int_{f_l}^{f_h} |H_{\ddot{z}w}(f)|^2 \, \hat{S}_w(f) df$$
(3.19)

где \hat{S}_w — предполагаемая спектральная модель Колмогорова при ε = 1. Модель фон Кармана может быть заменена моделью Колмогорова. В текущем применении f_l (отключение полосы задерживания) и f_h (отключение полосы пропускания) устанавливаются в пределах от 0,1 Гц до 0,8 Гц соответственно. Задачей полосового фильтра является удаление нагрузок, вызванных скорее не турбулентностью, а маневрами воздушного судна и частотными режимами изгибных колебаний крыла.

Интеграл передаточной функции воздушного судна оценивается по целому ряду условий полета и указывается в справочных таблицах, что упрощает и сокращает требования, предъявляемые к бортовым вычислениям. Данный алгоритм рассчитывает текущее среднее квадратическое значение от отфильтрованного сигнала за 10-секундные интервалы времени. При частоте выборок 8 Гц это обеспечивает получение 480 оценок EDR в минуту, на основе которых медиана и 90-й процентиль (обозначаемый как «пиковый») таких оценок используются для передачи информации с борта воздушного судна. Результаты измерений EDR преобразуются в сообщаемые цифровые данные посредством использования таблиц, которые являются гораздо более подробными по сравнению с приведенными в разделе 3.6.1. Подробное описание этих таблиц приводится в Аircraft Meteorological Data Relay (AMDAR) Reference Manual (*Справочное наставление AMДAP — Система передачи метеорологических данных с самолета*) (WMO, 2003).

3.6.3.2 **EDR, определяемая по вертикальным сдвигам ветра**

Данный метод кратко изложен в работе Cornman et al. (2004). Основная идея заключается в непосредственном расчете вертикальных сдвигов ветра с последующей оценкой EDR на их основе. Этот метод обладает преимуществом, благодаря которому нет необходимости получения передаточной функции воздушного судна, что трудно сделать в силу ее патентного характера.

$$w = V_T \left(\sin \alpha_b \cos \theta \cos \varphi - \cos \alpha_b \sin \theta \right) - \dot{Z}$$
(3.20)

Вышеуказанное уравнение используется для расчета вертикальных сдвигов ветра, где α_b — боковая ось угла атаки; heta — угол тангажа; arphi — угол крена, а \dot{Z} — инерционная вертикальная скорость. EDR рассчитывается по уравнению:

$$\hat{\varepsilon}^{1/3} = \left[\frac{1}{k_h - k_l + 1} \sum_{k=k_l}^{k_h} \frac{S^w(k)}{\hat{S}_w(k)}\right]^{1/2}$$
(3.21)

где k_i и k_h — это предельные значения индекса, соответствующие предельным значениям частоты в 0,5 Гц и 3,5 Гц (соответственно) для текущих применяемых значений 8 Гц; S^w — энергетический спектр w (уравнение 3.20) после обработки временных рядов; и S^w — предполагаемая спектральная модель фон Кармана со значением ε = 1, измененным для учета различных артефактов в S^w , возникающих при обработке сигнала. Как правило, данный алгоритм рассчитывает EDR ($\varepsilon^{1/3}$) с 10-секундными временными интервалами каждые 5 секунд. Это обеспечивает 12 оценок EDR в минуту, по которым фактическое и пиковое значения этих оценок используются для передачи информации с борта воздушного судна. Средние и пиковые значения EDR, наряду с метриками контроля качества, преобразуются в сообщаемые цифровые данные посредством использования кодирования (см. раздел 5.3.13.5 в публикации ARINC, 2012). Сообщенная точность как среднего, так и пикового значения EDR, составляет 0,02, что значительно выше, чем при применении метода на основе использования акселерометра.

3.6.3.3 **EDR**, рассчитанная по истинной воздушной скорости

Этот метод аналогичен расчету EDR по вертикальному сдвигу ветра (раздел 3.6.3.2), за тем исключением, что спектральные модели несколько иные, а вместо *w* используется истинная воздушная скорость. Преимущество этого метода заключается в том, что он более прост в применении и требует наличия только одного параметра. Недостатком является то, что он оценивает EDR, главным образом, в направлении вдоль траектории, что оказывает гораздо меньшее воздействие на воздушное судно по сравнению с турбулентностью в вертикальном направлении.

3.6.3.4 Погрешности измерений

Так же, как и метод DEVG, в методе EDR потенциально заложено большое число источников, способствующих погрешностям измерений. Анализ погрешностей показывает, что при расчете DEVG можно предполагать неопределенность порядка 5–10 % в случае применения метода, основанного на использовании акселерометра, для средней и несколько большей пиковой величины. Исходя из результатов модельных расчетов, предполагается аналогичная результативность при использовании других алгоритмов EDR. Еще одно осложнение возникает в связи с необходимостью выбора интервала дискретных измерений и времени усреднения. Анализ типичных временных рядов данных вертикальной нагрузки часто показывает высокую изменчивость статистических характеристик на коротких интервалах дискретных измерений. Вариация воздушной скорости для отдельного воздушного судна приводит к изменению интервалов между дискретными измерениями.

3.6.3.5 Соотношение между EDR и DEVG

Проведены подробные полевые сопоставления (Stickland, 1998) величин EDR и DEVG, полученных с помощью акселерометра. Результаты этих сравнений показали высокую степень корреляции между пиковыми значениями EDR и DEVG для одних и тех же зон турбулентности. Этот результат достаточно очевиден, поскольку значение EDR, полученное при помощи акселерометра, прямо пропорционально стандартному отклонению вертикальной перегрузки на выбранном интервале проведения измерений. Таким образом, при «нормальном» распределении экстремальное значение EDR будет тесно коррелировать с пиковым значением вертикального порыва ветра (пропорционального пиковому значению вертикальной перегрузки). Очевидно, что это соотношение не может быть применимо к единичному событию, выходящему за пределы данного распределения, а отсечение фильтра EDR на 0,8 Гц могло бы совершенно неоправданно сглаживать весьма резкие скачки, соответствующие отдельным порывам ветра. В случае вертикальных сдвигов ветра и использования методов, основанных на истинной воздушной скорости, применяется незначительная фильтрация, и она не имеет существенного отношения к этому последнему вопросу.

3.7 ОБЛЕДЕНЕНИЕ

Несколько типов датчиков могут быть детекторами нарастания льда на несущих поверхностях самолета. В настоящее время для этих целей используются два типа датчиков:

- а) тонкопленочный емкостный датчик, размещенный в потоке на специальном аэродинамическом профиле;
- b) механический датчик (преобразователь вибрации), выставленный в воздушный поток на несущей поверхности самолета.

3.7.1 Погрешности измерений

Выходным сигналом обоих датчиков является сигнал «наличие/отсутствие льда», и погрешность в этом случае будет определяться количеством ложных сигналов срабатывания датчика. В настоящее время нет данных о количестве ложных сигналов срабатывания этих датчиков.

3.8 СИСТЕМЫ НАБЛЮДЕНИЙ, УСТАНОВЛЕННЫЕ НА БОРТУ СМОЛЕТОВ

В настоящее время существует целый ряд широко используемых оперативных систем наблюдений, установленных на борту воздушных судов. На сегодняшний день АМДАР является основным источником данных наблюдений с самолетов, передаваемых по Глобальной системе телесвязи ВМО; в то же время, значительный вклад вносят данные наблюдений, получаемые с помощью других систем наблюдений, установленных на воздушных судах, и ожидается, что в будущем они будут предоставлять все бо́льшие объемы данных.

Уже разработан или разрабатывается ряд систем, аналогичных системе АМДАР, которые позволят расширить глобальный охват и увеличить количество наблюдений в приземном пограничном слое и в нижней тропосфере. Определенный акцент делается на использование небольших региональных самолетов и воздушных судов авиации общего назначения в целях установки на них либо стандартных систем АМДАР, либо специальных датчиков и коммуникационных систем. Эти воздушные суда совершают полеты из небольших аэропортов, которые обычно не охватываются самолетами, передающими сводки АМДАР, тех авиакомпаний, которые участвуют в национальных и региональных программах АМДАР.

3.8.1 Система передачи метеорологических данных с воздушного судна

Система наблюдений АМДАР должна эксплуатироваться в соответствии с техническими требованиями и стандартами ВМО (WMO, 2013). В настоящее время работа АМДАР основана на использовании Системы связи воздушных судов для адресации и передачи сообщений (ACARS) и почти полностью зависит от этой системы. Системы АМДАР передают данные по заданному профилю полета (набор высоты/снижение), а также во время горизонтального полета на крейсерской высоте.

Дополнительную информацию о нормативных требованиях в отношении установки и использования программы АМДАР и предоставления других данных наблюдений с борта воздушного судна см. Наставление по Глобальной системе наблюдений ВМО, часть III, 2.5 (ВМО, 2010а), и Руководство по Глобальной системе наблюдений ВМО, часть III, 3.4 (ВМО, 2010*b*). Текущую информацию по оперативным программам АМДАР и дополнительный справочный и руководящий материал см. на веб-сайте АМДАР ВМО: http://www.wmo.int/amdar.

3.8.2 Передача тропосферных метеорологических данных с самолетов

3.8.2.1 **Обзор ТАМДАР**

Передача тропосферных метеорологических данных с самолетов (ТАМДАР) — это разработанная, развернутая и эксплуатируемая в коммерческих целях система, которая производит и продает метеорологические данные, полученные, в основном, с независимого от самолета измерительного и коммуникационного датчика. В отличие от системы наблюдений АМДАР ВМО, в системе ТАМДАР главное внимание уделяется оснащению самолетов, в первую очередь, региональных авиатранспортных компаний, поскольку их полеты осуществляются, как правило: (i) в более отдаленные и разнообразные места; и (ii) являются менее длительными, благодаря чему получают большее количество суточных вертикальных профилей и обеспечивается возможность оставаться в пограничном слое в течение более длительных периодов времени. Хотя ТАМДАР является полностью функциональной и регулярно эксплуатируется на высоте более 40 000 футов, воздушные суда, на которых, как правило, устанавливается этот датчик, во многих случаях летают на крейсерском режиме на высоте ниже 25 000 футов.

ТАМДАР осуществляет сбор данных измерений относительной влажности (OB), давления, температуры, воздушных потоков, обледенения и турбулентности, наряду с данными о соответствующем местоположении, времени и геометрической высоте, сообщаемое встроенной системой ГСОМ. Эти данные передаются через спутник в режиме реального времени в наземный сетевой оперативный центр, где в процессе обработки данных осуществляется контроль качества до их распространения. Общее качество данных по влажности и температуре аналогично качеству данных радиозондов (Gao et al., 2012). Данные наблюдений за ветром рассчитываются аналогично типовому методу получения данных о воздушных потоках АМДАР, при этом используется курс, истинная воздушная скорость воздушного судна и вектор наземной трассы, который сообщается внутренним блоком ГСОМ.

Датчик ТАМДАР проводит дискретные измерения в основанном на давлении интервале во время набора и снижения высоты и в определяемом временем интервале в крейсерском режиме, который также меняется с высотой с 3 мин на более низких высотах до 7 мин на бо́льших высотах. В настоящее время в режиме набора и снижения высоты датчик сообщает данные через каждые 10 гПа, однако это может быть скорректировано дистанционно в режиме реального времени в сторону уменьшения до 1 гПа (~30 футов), в зависимости от скорости взлета и посадки. В течение полета в крейсерском режиме, если происходит изменение метрики сверху установленного порогового значения, то датчик направляет отдельное сообщение, и, таким образом, во время полета в условиях турбулентности через верхнюю границу облачности будет получено гораздо больше данных наблюдений, нежели во время полетов в крейсерском режиме на большей высоте при безоблачном небе.

3.8.2.2 Относительная влажность и температура

Для обеспечения избыточности данных при измерении ОВ ТАМДАР использует два емкостных сенсорных устройства. Фундаментальным физическим параметром, который сообщается посредством технологии емкостного датчика ТАМДАР, является плотность молекул H₂O. OB — это производный параметр, который учитывает температуру и давление. В эти устройства был добавлен отдельный фильтр, снабженный гидрофобной мембраной и который значительно повышает надежность и точность измерения благодаря предотвращению прямого смачивания сенсорного элемента (см. Mulally and Braid, 2009). Сообщаемая величина OB — это величина, представляющая собой согласованное значение на основе принципа «консенсус» между двумя устройствами, которое определяется алгоритмом в наземной системе обработки данных, описанном в работе Anderson (2006). Эта система учитывает данную величину и качество показаний каждого датчика. Как правило, если оба датчика сообщают одинаковые величины, то консенсусной величиной является просто среднее значения обеих. Если разночтения показаний датчиков превышают более 5 % и данные одного из них признаются ошибочными с использованием методов, описанных в Anderson (2006) и Gao et al. (2012), то в таком случае величина, сообщаемая сбоившим датчиком, маркируется и не используется при расчете среднего значения OB.

В сообщаемые датчиком данные о фактических значениях ОВ должны вноситься определенные поправки. Внесение первичных поправок обуславливается нагревом в числах Маха, а также разницей в давлении воздуха между условиями окружающей среды и условиями, измеряемыми датчиком. ОВ для частиц воздуха с заданной концентрацией водяного пара является функцией как температуры, так и давления. Существуют четыре основных фактора, которые способствуют внесению погрешности в измерение фактической ОВ, осуществляемое в ТАМДАР:

- a) погрешность измерения самого датчика ОВ (∆RH);
- b) погрешность измерения температуры датчиком ТАМДАР (T_{probe}) посредством термометра с платиновым сопротивлением;
- c) погрешность измерения рассчитываемой статической температуры воздуха (T_{static});
- d) погрешность измерения отношения статического давления (*P*_{static}) к расчетному значению давления датчика ОВ (*P*_{orobe}).

Базовый расчет, необходимый для определения статической ОВ, описывается следующим уравнением:

$$\mathrm{RH}_{\mathrm{static}} = \mathrm{RH}_{\mathrm{probe}} \left(\frac{P_{\mathrm{static}}}{P_{\mathrm{probe}}} \right) \cdot \left(\frac{e_{s_{\mathrm{probe}}} \left(T_{\mathrm{probe}} \right)}{e_{s_{\mathrm{static}}} \left(T_{\mathrm{static}} \right)} \right)$$
(3.22)

где RH_{static} — это атмосферная OB; RH_{probe} — фактическое измерение OB чувствительным элементом OB в датчике ТАМДАР; P_{static} — статическое давление воздуха; P_{probe} — давление воздуха в чувствительном элементе OB в датчике; T_{probe} — температура в полости чувствительного элемента датчика; T_{static} — статическая температура воздуха; $e_{s,probe}$ — давление насыщенного пара относительно воды; и $e_{s,static}$ — статическое давление насыщенного пара относительно воды. Как показано выше, коэффициент давления насыщенного пара является прямой функцией T_{probe} и T_{static} . Расчетное значение коэффициента давления (P_{static}/P_{probe}) было получено по результатам большого объема исследований в аэродинамической трубе (см. Braid et al., 2011; Smith et al., 2012).

Соотношение между T_{probe} (в основном извлеченная температура) и T_{static} выражается уравнением:

$$T_{\text{probe}} = T_{\text{static}} (1 + \lambda \cdot M^2)$$
(3.23)

где *M* — число Маха, а λ — постоянная величина, приблизительно равная 0,17. Фактической величиной измерения чувствительным элементом ОВ является истинное значение плюс погрешность чувствительного элемента, ΔRH, и таким образом:

$$RH_{probe} = RH_{true} + \Delta RH$$
 (3.24)

При использовании метода определения ОВ замена уравнения 3.24 уравнением 3.22 свидетельствует о наличии вопроса, который необходимо рассмотреть. По мере увеличения числа Маха и уменьшения температуры происходит быстрое повышение коэффициента давления насыщения ($e_{s,probe}/e_{s,static}$) в уравнении 3.22 и, как результат, усиливается эффект неопределенности чувствительного элемента ΔRH. Наземная система обработки данных проводит оценку ошибки в определении OB на основе температуры и

числа Маха. Эти данные используются наряду с известной точностью показаний датчика ОВ и точных показателей температуры для расчета общей погрешности определения ОВ, которое сообщается наряду с данными ОВ.

Диапазон параметров ОВ, который будет воздействовать на чувствительный элемент датчика ОВ, также уменьшается в результате нагрева, обусловленного числом Маха. На высоких скоростях параметры ОВ, определяемые внутренними характеристиками датчика, будут, как правило, меньше на 10 % в результате нагрева воздуха, в зависимости от числа Маха. Этот эффект учитывается в ТАМДАР посредством процесса калибровки. Каждый датчик ОВ характеризуется рядом нескольких параметров ОВ и температуры. Значения параметров специально отбираются при таких условиях, которые характеризуются возможностью ошибки, в частности условиями холодной и сухой погоды. Результатом этого процесса калибровки является возможность измерения ОВ, что является полезным даже на значительных высотах. Следует упомянуть о том, что значимым с практической точки зрения является один из эффектов нагревания вследствие числа Маха. Поскольку реагирование емкостного чувствительного элемента ухудшается по мере снижения температуры благодаря нагреву, обусловленному числом Маха, температура чувствительного элемента датчика ОВ сохраняется на более высоком уровне по сравнению с окружающей средой, в результате чего скорость реагирования является более быстрой, нежели в иных условиях.

3.8.2.3 Обнаружение обледенения системой ТАМДАР

Датчик системы ТАМДАР обнаруживает обледенение, используя две пары светодиодов (LED) и фотодетекторов (PD), при этом каждый из них характеризуется конечной величиной аналого-цифрового преобразования (AtDC) напряжения. В тех случаях, когда датчик ТАМДАР подвергается воздействию условий обледенения, аккумуляция льда происходит на поверхности промежутков фольги в зоне, находящейся между парами LED/ PD. По мере увеличения слоя нарастающего льда происходит затемнение инфракрасных лучей, в результате чего значения AtDC пар LED/PD снижаются на половину от нормального незаблокированного значения, в результате чего датчик ТАМДАР показывает позитивные параметры обледенения. Сразу, после подтверждения обнаружения появления льда посредством алгоритмов, которые проверяют согласованность данного события с текущими условиями окружающей среды (а именно, *T* и OB), происходит автоматическое включение обогревателей датчика ТАМДАР для устранения льда. Этот процесс продолжается до тех пор, пока показатели напряжения PD превышают половину номинального незаблокированного значения.

Все явления обледенения, фиксируемые системой ТАМДАР, отслеживаются в рамках потока данных с использованием маркеров обледенения. Эти маркеры помечают начало возникновения события обледенения; момент времени, когда были включены обогреватели; продолжительность продолжения обледенения; охлаждение датчика и указание момента времени прекращения процесса обледенения. Значения AtDC пар LED/ PD, которые используются для обнаружения наличия или отсутствия обледенения, используются для расчета системой ТАМДАР показателя содержания жидкой воды (СЖВ). Результирующее отношение выходного напряжения AtDC ТАМДАР используется для расчета интенсивности процесса обледенения, и, тем самым, является основой для получения значений СЖВ. Показатели временного снижения значений AtDC используются для расчета интенсивности времения или нарастания льда.

3.8.2.4 Обнаружение турбулентности системой ТАМДАР

Данные о турбулентности сообщаются в виде данных о скорости диссипации турбулентной энергии, и они основываются на дискретных измерениях истинной воздушной скорости (TAS), которые вычисляются по показаниям приемника ТАМДАР для замера полного и статического давления воздушного давления, а также температуры. Сводка включает средние и пиковые значения EDR, а также момент времени пикового значения за каждый одноминутный период. Алгоритм турбулентности EDR не зависит от конфигурации и условий полета воздушного судна. Таким образом, он не зависит от типа воздушного судна, а также не зависит от нагрузки и полетных характеристик.

Для расчета EDR методология ТАМДАР использует оценку продольного сдвига ветра через параметр TAS. ТАМДАР может получить TAS через два источника: (i) ТАМДАР может рассчитать TAS по данным измерений датчиком полного и статического давлений (трубка Пито), либо (ii) по базе данных ARINC 429. После проведения данной системой измерения разности между полным и статическим давлениями данные этого измерения передаются затем через фильтр до проведения расчета TAS.

Метод Мак-Креди используется для оценки EDR, основанной на предполагаемом коэффициенте наклона спектра мощности величиной –5/3 из модели Колмогорова сигнала TAS. Для фильтрации дифференциального датчика давления применяется низкочастотный заграждающий фильтр Баттерворта четвертого порядка с частотой среза по уровню 3 децибела (дБ), равной 5 Гц. Управление окнами завершается до быстрого преобразования Фурье (БПФ), с тем чтобы сделать данное изменение более спектральным (64-точечное БПФ). EDR рассчитывается каждые 3 с, используя 6-секундный блок данных TAS при частоте 10,67 Гц. Величины EDR могут усредняться, если желательной является получение более гладкого результата; обычно используется 6-секундное усреднение, однако пользователи имеют возможность конфигурировать это усреднение для удовлетворения их потребностей. Применяется также фильтр, обеспечивающий гарантию качества.

3.9 ДРУГИЕ СИСТЕМЫ И ИСТОЧНИКИ САМОЛЕТНЫХ НАБЛЮДЕНИЙ

3.9.1 Система автоматического зависимого наблюдения ИКАО

Разработка глобальных систем аэронавигации тесно связана с разработками в области коммуникационных систем. Таким образом, будущая аэронавигационная система (ФАНС) сочетается с разработкой системы автоматического зависимого наблюдения (ADS), которая, в свою очередь, связана с глобальной спутниковой системой связи воздушных судов. Глобальная система связи воздушных судов трансформируется в открытую сеть в рамках проекта по авиационной сети телесвязи (Wells et al., 1990). Эта сеть свяжет системы ОВЧ и САТКОМ в единую открытую сеть.

Для оптимальной по погодным условиям прокладки маршрутов коммерческих воздушных судов, в особенности для обеспечения безопасности полетов, сведения к минимуму расхода топлива и нагрузки, приводящей к усталости силового набора фюзеляжа, а также для обеспечения комфортных условий для пассажиров, требуется повышенная точность авиационных прогнозов. Таким образом, в автоматические сводки о местоположении воздушного судна для обеспечения ADS могут быть включены автоматические метеорологические сводки. Данные, которые должны включаться в эти сводки, — это в основном те же данные, что и данные существующих систем АМДАР, включая данные о допустимой турбулентности и влажности воздуха.

Данные, полученные из системы ADS Contract (ADS-C) ИКАО, передаются в ГСТ ВМО. Эти данные представляются согласно соглашению, заключенному с ИКАО и изложенному в Приложении 3 ИКАО к Конвенции о международной гражданской авиации — *Метеорологическое обеспечение международной аэронавигации*, глава 5 и приложение 4. Регламентом ИКАО предусматривается, что центры организации воздушного движения должны передавать сообщения ADS-C во всемирные центры зональных прогнозов (ВЦЗП), которые затем отвечают за передачу этих данных по Глобальной системе телесвязи ВМО (см. *Правила аэронавигационного обслуживания* — *Организация воздушного движения*, ИКАО, Doc. 4444, 4.11.4).

3.9.2 Новые и разрабатываемые системы

3.9.2.1 Режим расширенного наблюдения — адресный

Данные наблюдений за ветром и температурой могут также быть получены по данным наблюдений, собранным для целей управления воздушным движением (УВД) с использованием радиолокатора расширенного наблюдения (EHS) в режиме S (адресные). Этот радиолокатор запрашивает у каждого воздушного судна конкретную информацию с частотным циклом 4–20 с, в зависимости от задач УВД конкретного радиолокатора. В назначенном воздушном пространстве все воздушные суда обязаны отвечать на запрос радиолокатора EHS, работающего в режиме S. Обязательные регистры (BDS4,0, BDS5,0 и BDS6,0) содержат информацию об идентичности воздушного судна, эшелоне полета, угле крена, магнитном курсе, воздушной скорости, числе Маха и траектории. Данные о местоположении воздушного судна можно получить либо при помощи радиолокатора УВД или из данных автоматического зависимого наблюдения в режиме радиовещания (ADS-B), которые непрерывно передаются этим воздушным судном.

Получение данных о сдвиге ветра при помощи EHS в режиме S аналогично AMДAP, за тем исключением, что истинный курс должен определяться по магнитному курсу. Помимо применения таблицы магнитных отклонений необходимо применять дополнительные корректировки, зависящие от воздушного судна. Корректировки курса могут со временем меняться в результате технического состояния воздушного судна. В настоящее время эти корректировки определяются для каждого воздушного судна путем сравнения с данными численного прогноза погоды (ЧПП). Помимо корректировки курса, также применяется корректировка воздушной скорости, основанная на долгосрочном сравнении с данными ЧПП (см. de Haan, 2013). После корректировок и контроля качества производная информация о сдвиге ветра аналогична по своему качеству данным AMДAP (de Haan, 2011, 2013). Получение данные о температуре по данным EHS в режиме S осуществляется путем комбинации числа Maxa и воздушной скорости. Качество данных о производной температуре понижается сообщаемым разрешением числа Maxa и воздушной скорости. Качество данных о производной температуре понижается сообщаемым разрешением числа Maxa и воздушной скорости. Качество данных о производной температуре понижается сообщаемым разрешением числа Maxa и воздушной скорости, и оно, безусловно, ниже качества данных о температуре AMДAP (de Haan, 2011, 2013).

3.9.2.2 Режим регулярной метеорологической сводки с борта воздушного судна

Радиолокатор EHS в режиме S может также запрашивать необязательные регистры, которые могут содержать метеорологическую информацию. Примером является регистр BDS4,4 EHS режима S, который называется «регулярная метеорологическая сводка с борта воздушного судна (MRAR)». Этот регистр содержит непосредственную информацию о сдвиге ветра и температуре, которая весьма близка к информации о сдвиге ветра и температуре AMДAP (Stranjar, 2012). Поскольку регистр BDS4,4 не является обязательным, то лишь часть (примерно 5 %) воздушных судов отвечают на запрос и сообщают ценную метеорологическую информацию.

СПРАВОЧНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

Всемирная метеорологическая организация, 2010*а*: *Наставление по Глобальной системе наблюдений* (ВМО-№ 544), том І. Женева.

——, 2010b: Руководство по Глобальной системе наблюдений (BMO-№ 488). Женева.

——, 2011: Наставление по кодам (ВМО-№ 306). Женева.

- Abbott, I.H. and A.E. von Doenhoff, 1959: *Theory of Wing Sections*. Dover Publications, Inc., Mineola, New York, 693 pp.
- AirDat, 2003: TAMDAR Tropospheric Airborne Meteorological Data Reporting Sensor and System Overview; AirDat Infrastructure and Global Capabilities. Information document, AirDat LLC, Evergreen, Colorado.
- Anderson, A.K., 2006: AirDat system for ensuring TAMDAR data quality. Tenth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS), American Meteorological Society, Atlanta, GA.
- ARINC, 2012: 620-7 Data Link Ground System Standard and Interface Specification. Aeronautical Radio, Inc., Annapolis, Maryland.
- Benjamin, S.G., B.D. Jamison, W.R. Moninger, S.R. Sahm, B.E. Schwartz and T.W. Schlatter, 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and Mesonet observations via the RUC hourly assimilation cycle. *Monthly Weather Review*, 138:1319–1343.
- Braid, J., P. Van Wie, and J. Rex, 2011: Using the TAMDAR sensor for In-flight Ice detection and improved safety of flight, *SAE Technical Paper 2011-38-0051*, International Conference on Aircraft and Engine Icing and Ground Deicing. Society of Automotive Engineers.
- Cornman, L.B., G. Meymaris and M. Limber, 2004: An update on the FAA Aviation Weather Research Program's in situ turbulence measurement and reporting system. Eleventh Conference on Aviation, Range and Aerospace Meteorology, Hyannis, MA.
- Cornman, L.B., C.S. Morse and G. Cunning, 1995: Real-time estimation of atmospheric turbulence severity from in situ aircraft measurements. *Journal of Aircraft*, 32(1):171–177.
- Dommasch, D.O., S.S. Sherby and T.F. Connolly, 1958: Airplane Aerodynamics. New York, Pitman, 560 pp.
- Fleming, R.J., 2000: Water vapor measurements from commercial aircraft: Progress and plans. Preprints. Fourth Symposium on Integrated Observing Systems, Long Beach, CA, American Meteorological Society, 30–33.
- ——, 2003: The WVSS-II and the UCAR air sampler: Purpose, design, status (personal communication). University Corporation for Atmospheric Research, Boulder, Colorado.
- Gao, F., X.Y. Zhang, N.A. Jacobs, X.-Y. Huang, X. Zhang and P.P. Childs, 2012: Estimation of TAMDAR observational error and assimilation experiments. *Weather and Forecasting*, 27:856–877.
- Haan, S. de, 2011: High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar. *Journal of Geophysical Research*, 116(D10111).
- ——, 2013: An Improved Correction Method for High Quality Wind and Temperature Observations Derived from Mode-S EHS. KNMI Technical Report No. TR-338, De Bilt.
- International Civil Aviation Organization (ICAO), 2007: Procedures for Air Navigation Services Air Traffic Management. Fifteenth edition, Doc 4444, Montreal.
- ------, 2013: *Meteorological Service for International Air Navigation.* ICAO Annex 3, Eighteenth edition, Amendment 76, Montreal.
- International Organization for Standardization (ISO), 2007: *Standard Atmosphere*, ISO 2533:1975 (with two additions in 1985 and 1997, reviewed and confirmed in 2007). Geneva.
- Lawson, R.P. and W.A. Cooper, 1990: Performance of some airborne thermometers in clouds. *Journal of Atmospheric and Oceanic Technology*, 7:480–494.
- May, R.D., 1998: Open-path, near-infrared tuneable diode laser spectrometer for atmospheric measurements of H2O. *Journal of Geophysical Research*, 103:19161–19172.
- May, R.D. and C.R. Webster, 1993: Data processing and calibration for tuneable diode laser harmonic absorption spectrometers. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 49(4):335–347.
- Meteorological Service of Canada, 2003: *The Effect of Pitch and Roll Attitude on the Calculation of Wind* (G. Bruce). Aeromechanical Services Ltd., 1118-1c, Rev. 1.0.
- Moninger, W.R., S.G. Benjamin, B.D. Jamison, T.W. Schlatter, T.L. Smith and E.J. Szoke, 2010: Evaluation of regional aircraft observations using TAMDAR. *Weather and Forecasting*, 25:627–645.

- Mulally, D.J. and J.T. Braid, 2009: *The TAMDAR Sensor's Relative Humidity Performance on ERJ-145 Commercial Aircraft.* Thirteenth Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), American Meteorological Society, Phoenix, AZ.
- Nash, J., 1994: Upper wind observing systems used for meteorological operations. *Annales Geophysicae*, 12:691–710.
- Petersen, R.A., L. Cronce, W. Feltz, E. Olson and D. Helms, 2011: *Validation Studies of WVSS-II Moisture Observations.* Fifteenth Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), American Meteorological Society, Seattle, WA.
- Rodi, A.R. and P.A. Spyer-Duran, 1972: Analysis of time response of airborne temperature sensors. *Journal of Applied Meteorology*, 11:554–556.
- Sherman, D.J., 1985: The Australian Implementation of AMDAR/ACARS and the Use of Derived Equivalent Gust Velocity as a Turbulence Indicator. Structures Report No. 418, Department of Defence, Defence Science and Technology Organisation, Aeronautical Research Laboratories, Melbourne, Victoria.
- Smith, W.L., P. Minnis, C. Fleeger, D. Spangenberg, R. Palikonda and L. Nguyen, 2012: Determining the flight icing threat to aircraft with single-layer cloud parameters derived from operational satellite data. *Journal of Applied Meteorology and Climatology*, 51:1794–1810.
- Stickland, J.J., 1998: An Assessment of Two Algorithms for Automatic Measurement and Reporting of Turbulence from Commercial Public Transport Aircraft. A report to the ICAO METLINK Study Group. Observations and Engineering Branch, Bureau of Meteorology, Melbourne.
- Stickney, T.M., M.W. Shedlov, D.I. Thompson, 1990: *Rosemount Total Temperature Sensors*. Technical Report 5755, Revision B, Rosemount Inc.
- Strajnar, B., 2012: Validation of Mode-S Meteorological Routine Air Report aircraft observations. *Journal of Geophysical Research: Atmospheres*, 117(D23).
- Wells, V.E. et al., 1990: Migration of ACARS to the Aeronautical Telecommunication Network. *Proceedings of the Aeronautical Telecommunications Symposium on Data Link Integration*, Annapolis, Maryland.
- World Meteorological Organization, 2003: Aircraft Meteorological Data Relay (AMDAR) Reference Manual (WMO-No. 958). Geneva.
- ——, 2013: AMDAR Onboard Software Functional Requirements Specification. Instruments and Observing Methods Report No. 114. Geneva.