МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

РУКОВОДЯЩИЙ ДОКУМЕНТ

РД 52.24.413-2011

МАССОВАЯ КОНЦЕНТРАЦИЯ ДАЛАПОН-НАТРИЯ И ТРИХЛОРАЦЕТАТА НАТРИЯ В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ГАЗОХРОМАТОГРАФИЧЕСКИМ МЕТОДОМ

Предисловие

- 1 РАЗРАБОТАН Государственным учреждением Гидрохимический институт (ГУ ГХИ)
- 2 РАЗРАБОТЧИКИ Л.В. Боева, канд. хим. наук; Ю.А. Андреев, О.А. Михайленко
 - 3 СОГЛАСОВАН с ГУ «НПО «Тайфун» 29.12.2010 и УМЗА Росгидромета 15.03.2011
 - 4 УТВЕРЖДЕН Заместителем Руководителя Росгидромета 16.03.2011
- 5 АТТЕСТОВАН ГУ ГХИ, свидетельство об аттестации методики выполнения измерений № 67.24-2010 от 07.05.2010 г.
- 6 ЗАРЕГИСТРИРОВАН ЦМТР ГУ НПО «Тайфун» за номером РД 52.24.413-2010 от 24.03.2011
- 7 ВЗАМЕН РД 52.24.413-95 «Методические указания. Методика выполнения измерений массовой концентрации далапон-натрия и трихлорацетата натрия в поверхностных водах суши газохроматографическим методом»

Содержание

1 Ооласть применения	I
2 Нормативные ссылки.	1
3 Приписанные характеристики погрешности измерения	
4 Средства измерений, вспомогательные устройства, реактивы, материалы	3
4.1 Средства измерений, вспомогательные устройства	3
4.2 Реактивы и материалы	<u>5</u>
5 Метод измерений	
6 Требования безопасности, охраны окружающей среды	6
7 Требования к квалификации операторов	6
8 Условия выполнения измерений.	7
9 Отбор и хранение проб	
10 Подготовка к выполнению измерений	7
10.1 Приготовление растворов и реактивов	
10.2 Подготовка анионита.	
10.3 Подготовка хроматографической колонки для концентрирования далапон-натрия и ТХАН	9
10.4 Приготовление фильтра для очистки воздуха	10
10.5 Подготовка набивной колонки	10
10.6 Подготовка хроматографа	10
10.7 Приготовление градуировочных растворов далапон-натрия и ТХАН	12
10.8 Приготовление градуировочных образцов.	12
11 Выполнение измерений	13
11.1 Холостое измерение	
11.2 Извлечение из воды и концентрирование далапон-натрия и ТХАН	
11.3 Этерификация	14
11.4 Извлечение бутиловых эфиров 2,2-дихлорпропионовой и трихлоруксусной кислот	14
11.5 Хроматографирование	15
11.6 Определение коэффициента потерь	16
11.7 Устранение мешающих влияний	17
12 Вычисление и оформление результатов измерений	17
13 Контроль качества результатов измерений при реализации методики в лаборатории	
13.1 Общие положения	
13.2 Алгоритм оперативного контроля процедуры выполнения измерений с использованием метода д	
14 Проверка приемлемости результатов, полученных в условиях воспроизводимости	
Приложение А	
(рекомендуемое)	
Методика приготовления аттестованных растворов.	
АР-ДХАН и АР-ТХАН для установления градуировочных	
характеристик приборов и контроля точности результатов	
измерений массовой концентрации гербицидов далапон-натрия	22
и трихлорацетата натрия газохроматографическим методом.	22

Введение

Гербициды далапон-натрий (2,2-дихлопропионат натрия, аграпон, далапон, пропинат, радопон) и трихлорацетат натрия (ТХАН, ТЦА, аграмон, ТХА) широко применяются в агрохимической практике для борьбы с сорной растительностью в посевах различных культур, что обусловливает их поступление в водные объекты с ливневым стоком с сельхозугодий, с грунтовыми водами, из оросительных систем и с атмосферными осадками. Во многих случаях далапон-натрий и трихлорацетат натрия непосредственно вносят в водные объекты для уничтожения сорняков на мелиоративных системах и открытых каналах коллекторно-дренажной сети. Высокая растворимость далапон-натрия и трихлорацетата натрия в воде способствует быстрой миграции этих гербицидов в природных водах.

Далапон-натрий и трихлорацетат натрия сравнительно малотоксичны и обладают способностью быстро (в течение нескольких суток) гидролизоваться в природных водах. Однако из-за масштабов применения эти гербициды включены в приоритетный перечень пестицидов, подлежащих контролю в поверхностных водах.

Предельно допустимые концентрации (ПДК) далапон-натрия и трихлорацетат натрия приведены в таблице 1.

Таблица 1 - ПДК далапон-натрия и трихлорацетата натрия в природных водах

	Π ДК, м Γ /дм 3		
Гербицид	в воде водных объектов хозяйственно-питьевого и культурно-бытового	в воде водных объектов, имеющих рыбохозяйственное	
	и культурно-оытового водопользования	значение	
Далапон-на-	0,04 (по ГН 1.2.1323-03)	3,0	
трий	2,0 (по ГН 2.1.5.1315-03)		
Трихлорацетат	5,00 (по ГН 2.1.5.1315-03)	0,04	
натрия			

РУКОВОДЯЩИЙ ДОКУМЕНТ

МАССОВАЯ КОНЦЕНТРАЦИЯ ДАЛАПОН-НАТРИЯ И ТРИХЛОРАЦЕТАТА НАТРИЯ В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ГАЗОХРОМАТОГРАФИЧЕСКИМ МЕТОДОМ

Дата введения - 2011-05-11

1 Область применения

- 1.1 Настоящий руководящий документ устанавливает методику выполнения измерений (далее методика) массовой концентрации гербицидов трихлорацетата натрия (далее ТХАН) и далапон-натрия в пробах природных и очищенных сточных вод в диапазоне от 0.02 до $1.00~\rm Mг/\rm дм^3$.
- 1.2 Допускается выполнение измерений массовых концентраций далапон-натрия и ТХАН, превышающих 1,00 мг/дм³, при разбавлении гексанового экстракта в соответствии с 11.5.
- 1.2 Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих анализ природных и очищенных сточных вод.

2 Нормативные ссылки

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

РД 52.24.413-2011

- ГН 1.2.1323-03 Гигиенические нормативы содержания пестицидов в объектах окружающей среды
- ГН 2.1.5.1315-03.Предельно допустимые концентрации (ПДК) химических веществ в воде водныхобъектов хозяйственно-питьевого и культурно-бытового водопользования

МИ 2881-2004 Рекомендация. ГСИ. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа.

Примечание - Ссылки на остальные нормативные документы приведены в разделах 4, А.3 и А.4 (приложение А).

3 Приписанные характеристики погрешности измерения

3.1 При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведенных в таблице 2.

Таблица 2 – Диапазон измерений, значения характеристик погрешности и ее составляющих при принятой вероятности Р=0,95

На-	Диапазон	Показатель по-	Показатель вос-	Показатель	Показатель
имено-	измерений	вторяемости	производимости	правильности	точности
вание	массовых	(среднеквадра-	(среднеквадрати-	(границы си-	(границы
герби-	концентра-	тическое откло-	ческое отклоне-	стематической	погрешно-
цида	ций	нение повторя-	ние воспроизво-	погрешности)	сти)
		емости)	димости)		
	X , $M\Gamma/дM^3$	$\sigma_{\rm r}$, мг/дм ³	σ_R , мг/дм ³	$\pm \Delta_{\rm c}$, мг/дм ³	$\pm \Delta$, мг/дм ³
Дала- пон- натрий	От 0,02 до 1,00	0,001+0,08·X	0,001+0,12·X	0,001+0,10·X	0,003+0,24·X
ТХАН	От 0,02 до 1,00	0,001+0,09·X	0,002+0,13·X	0,002+0,10·X	0,005+0,26·X

При выполнении измерений массовой концентрации далапон-натрия и ТХАН свыше $1{,}00~{\rm мкг/дm^3}$ после соответствующего разбавления экстракта, погрешности измерения не превышают значений, рассчитанных по приведенным в таблице 2 зависимостям.

4 Средства измерений, вспомогательные устройства, реактивы, материалы

4.1 Средства измерений, вспомогательные устройства

- 4.1.1 Хроматограф газовый типа Цвет-550, Кристалл 2000М, Хромат-эк-Кристалл 5000.2 или аналогичный с электронозахватным детектором (ЭЗД, ДПР, ИРД).
- 4.1.2 Весы лабораторные высокого (II) класса точности по ГОСТ Р 53228-2008.
- 4.1.3 Весы лабораторные среднего (III) класса точности по ГОСТ Р 53228-2008 с пределом взвешивания $1000~\mathrm{r}$.
 - 4.1.4 Микрошприц МШ-10М по ТУ 2-833-106-90-2 шт.
 - 4.1.5 Секундомер 2-го класса точности по ГОСТ 5072-79.
- 4.1.6. Колбы мерные 2-го класса точности исполнения 2 по ГОСТ 1770-74 вместимостью: $50 \text{ см}^3 8 \text{ шт.}$, $1000 \text{ см}^3 1 \text{ шт.}$
- 4.1.7 Пипетки градуированные 2-го класса точности исполнения 1,2 по ГОСТ 29227-91, вместимостью:

$$1 \text{ cm}^3 - 6 \text{ iiit.}, 2 \text{ cm}^3 - 3 \text{ iiit.}, 5 \text{ cm}^3 - 4 \text{ iiit.}, 10 \text{ cm}^3 - 1 \text{ iiit.}$$

- 4.1.8 Пипетки с одной отметкой 2-го класса точности исполнения 2 по ГОСТ 29169-91 вместимостью 5 см 3 10 шт.
- 4.1.9 Цилиндры мерные исполнения 1, 3 по ГОСТ 1770-74 вместимостью: $25~{\rm cm}^3-3~{\rm mt.},\,50~{\rm cm}^3-2~{\rm mt.},\,100~{\rm cm}^3-1~{\rm mt.},\,250~{\rm cm}^3-2~{\rm mt.},\,$ исполнения 1 вместимостью $1000~{\rm cm}^3-3~{\rm mt.}$
- 4.1.10 Цилиндры мерные исполнения 2 по ГОСТ 1770-74 вместимостью 50 см 3 с притертыми пробками 10 шт.
- 4.1.11 Пробирки градуированные исполнения 2 с притертыми пробками с ценой деления $0,1~{\rm cm}^3$ по ГОСТ 1770-74, вместимостью:

$$5 \text{ cm}^3 - 4 \text{ шт.}; 10 \text{ см}^3 - 10 \text{ шт.}$$

- 4.1.12 Колбы Кн исполнения 1, TC, по ГОСТ 25336-82 с притертыми пробками вместимостью: $50 \text{ см}^3 20 \text{ шт.}$; $100 \text{ см}^3 1 \text{ шт.}$, $1000 \text{ см}^3 1 \text{ шт.}$
- 4.1.13 Воронки делительные типа ВД исполнения 1, 3 по ГОСТ 25336-82 вместимостью:
- 25 cm^3 или $50 \text{ cm}^3 8 \text{ шт.}$, $250 \text{ cm}^3 1 \text{ шт.}$, $1000 \text{ cm}^3 1 \text{ шт.}$, $2000 \text{ cm}^3 1 \text{ шт.}$
- 4.1.14Воронки лабораторные, тип В, по ГОСТ 25336-82 диаметром 36 мм 6 шт., 75 мм 1 шт.
- 4.1.15 Стаканы, тип B, исполнения 1 по ГОСТ 25336-82, вместимостью: $250 \text{ см}^3 2 \text{ шт.}$; $400 \text{ см}^3 1 \text{ шт.}$; $1000 \text{ см}^3 8 \text{ шт.}$; $2000 \text{ см}^3 1 \text{ шт.}$
- 4.1.16 Колонка газохроматографическая стеклянная длиной 1,5 2 м с внутренним диаметром 3 мм или кварцевая капиллярная колонка HP-5, HP-50+ или аналогичная другой марки длиной 25-30 м, диаметром 0,32 мм

с толщиной плёнки неподвижной фазы 0,25 мкм (далее – капиллярная колонка).

- 4.1.17 Колонки для ионообменной хроматографии диаметром 40-50 мм и высотой 550-600 мм с пористым стеклянным фильтром и краном -5 шт.
- 4.1.18 Установка из стекла группы ТС для перегонки растворителей (круглодонная колба типа К-1 исполнения 1 с взаимозаменяемым конусом 29/32, вместимостью 1000 см^3 , дефлегматор длиной 350 мм с взаимозаменяемыми конусами 19/26 и 29/32, насадка типа Н1 с взаимозаменяемыми конусами 19/26-14/23-14/23, холодильник типа ХПТ-1 исполнения 1 длиной не менее 400 мм, алонж типа АИ с взаимозаменяемым конусом муфты 14/23) по ГОСТ 25336-82, термометр лабораторный ТЛ-50 с взаимозаменяемым конусом КШ 14/23, длиной нижней части термометра 60 мм и диапазоном измерения температур от 0 °C до 100 °C, цена деления шкалы -0.5 °C по ТУ 25-2021.007-88.
- 4.1.19 Стаканчики для взвешивания (бюксы) по ГОСТ 25336-82: CB-19/9 2 шт., CB 34/12- 2 шт.
 - 4.1.20 Пипетка Пастера по ТУ 9464-001-52876351-2000-2 шт.
- 4.1.21 Эксикатор исполнения 2, диаметром корпуса 250 мм по ГОСТ 25336-82.
 - 4.1.22 Склянка для промывания газов типа СПТ по ГОСТ 25336-82.
- 4.1.23 Чашки ЧБН 2 (чашки Петри) или ЧБН 1-100 по ГОСТ 25336-82 -4 шт.
 - 4.1.24 Чашка выпарительная № 4 или 5 по ГОСТ 9147-80 1 шт.
- 4.1.25 Палочки стеклянные по ГОСТ 27460-87 диаметром 6-7 мм длиной 25 см.
- 4.1.26 Посуда стеклянная для отбора проб и хранения растворов вместимостью 0.05; 0.1; 0.25; 1.0 дм³.
 - 4.1.27 Сита с диаметром отверстий 0,5 и 1 мм.
- 4.1.28 Генератор водорода любого типа, вырабатывающий водород марки «А» по ГОСТ 3022-80.
 - 4.1.29 Микрокомпрессор аквариумный любого типа
 - 4.1.30 Насос вакуумный любого типа.
 - 4.1.31 Штативы лабораторные по ТУ 64-1-707-80.
 - 4.1.32 Муфельная печь любого типа с регулируемым нагревом.
 - 4.1.33 Шкаф сушильный общелабораторного назначения.
 - 4.1.34 Электроплитка по ГОСТ 14919-83.
 - 4.1.35 Холодильник бытовой.

Примечание - Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в 4.1.

4.2 Реактивы и материалы

- 4.2.1 Натрий 2,2-дихлорпропионат по ТУ 6-09-13-695-78, ч., или кислота 2,2-дихлорпропионовая по ТУ 6-09-08-1752-84, ч., с содержанием основного вещества не менее 97%
- 4.2.2 Трихлорацетат натрия, ОСО 113-04-095-91 или трихлоруксусной кислоты натриевая соль по ТУ 6-09-11-840-77, ч., или трихлоруксусная кислота по ТУ 6-09-1926-77, ч., с содержанием основного вещества не менее 97%.
- 4.2.3 Хроматон N-AW-DMCS (N-AW-HMDS) (фракция 0,125-0,16 мм или 0,16-0,20 мм) с 5 % нанесённой неподвижной фазы SE-30 или XE-60 или с 3 % неподвижной фазы OV-17.
 - 4.2.4 н-Гексан (далее гексан) по ТУ 2631-003-05807999-98, х. ч.
 - 4.2.5 Ацетон по ТУ 2633-039-44493179-00, ос.ч.
 - 4.2.6 Бутанол-1 (бутиловый спирт) по ГОСТ 6006-78, ч.д.а.
 - 4.2.7 Хлороформ (трихлорметан) по ТУ 2631-066-44493179-01, х.ч.
- 4.2.8 Натрий сернокислый, безводный (сульфат натрия) по ГОСТ 4166-76, ч.д.а.
 - 4.2.9 Кислота серная по ГОСТ 4204-77, х.ч.
 - 4.2.10 Кислота соляная по ГОСТ 3118-77 х.ч.
 - 4.2.11 Натрия гидроокись (гидроксид натрия) по ГОСТ 4328-77, ч.д.а.
 - 4.2.12 Натрий хлористый (хлорид натрия) по ГОСТ 4233-77, ч.д.а.
- 4.2.13 Натрий углекислый кислый (гидрокарбонат натрия) по ГОСТ 4201-79, х.ч. или ч.д.а.
- 4.2.14 Кальций хлористый обезвоженный (гранулы) по ТУ 6-09-4711-81, ч.
- 4.2.15 Анионит AB-16ГС по ГОСТ 20301-74 или сильноосновной анионит другой марки (например AB-17, IRA-400 и др.).
- 4.2.16 Универсальная индикаторная бумага рН 1-10 по ТУ 6-09-1181-76.
- 4.2.17 Азот нулевой, марка «А» по ТУ 6-21-39-96 или азот газообразный ос.ч. (1 сорт) по ГОСТ 9293-74.
 - 4.2.18 Уголь активный БАУ-А по ГОСТ 6217-74.
 - 4.2.19 Вода дистиллированная по ГОСТ 6709-72.
 - 4.2.20 Фильтровальная бумага по ГОСТ 12026-76.
 - 4.2.21 Стеклоткань или стекловата по ГОСТ 10146-74.
 - 4.2.22 Вата медицинская по ГОСТ 5556-81.
- 4.2.23 Трубка из силиконовой резины с внутренним диаметром 6-7 мм.

Примечание - Допускается использование реактивов, изготовленных по другой нормативной и технической документации, в том числе импортных, с квалификацией не ниже указанной в 4.2.

5 Метод измерений

Выполнение измерений основано на извлечении из воды и концентрировании далапон-натрия и ТХАН сорбцией на ионообменной колонке с последующим элюированием их из колонки насыщенным раствором бутанола в растворе хлорида натрия.

Содержащиеся в элюате гербициды этерифицируют бутанолом в присутствии серной кислоты. Образовавшиеся бутиловые эфиры 2,2-дихлор-пропионовой и трихлоруксусной кислот извлекают из реакционной смеси гексаном и количественно определяют методом газовой хроматографии с электронзахватным детектором.

Идентификацию далапон-натрия и ТХАН осуществляют по временам удерживания, расчёт концентрации проводят по соотношению высот или площадей их хроматографических пиков на хроматограммах градуировочных растворов и пробы.

6 Требования безопасности, охраны окружающей среды

- 6.1 При выполнении измерений массовой концентрации далапон-натрия и ТХАН в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в национальных стандартах и соответствующих нормативных документах.
- 6.2 По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся к 2, 3, 4 классам опасности по ГОСТ 12.1.007.
- 6.3 Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных ПДК в соответствии с ГОСТ 12.1.005.
- 6.4 Выполнение измерений следует проводить при наличии вытяжной вентиляции.
- 6.5 Оператор, выполняющий измерения на хроматографе должен знать правила безопасности при работе с электрооборудованием и сжатыми газами.
- 6.6 Градуировочные растворы и экстракты гербицидов, а также сливы органических растворителей собирают в герметично закрывающуюся посуду и утилизируют согласно установленным правилам.

7 Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускаются лица с высшим профессиональным образованием или со средним профессиональным образованием и стажем работы в лаборатории не менее 2 лет,

владеющие техникой газохроматографического анализа и освоившие методику.

8 Условия выполнения измерений

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

- температура окружающего воздуха (20±5) °C;
- атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);
 - влажность воздуха не более 80 % при 25 °C;
 - напряжение в сети (220±10) В;
 - частота переменного тока в сети питания (50±1) Гц.

9 Отбор и хранение проб

Отбор проб для выполнения измерений массовой концентрации далапон-натрия и ТХАН производится в соответствии с ГОСТ 17.1.5.05 и ГОСТ Р 51592. Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04 и ГОСТ Р 51592. Из пробоотборника пробу без фильтрования переносят в стеклянные бутыли вместимостью 1 дм³ и закрывают притёртыми стеклянными или обёрнутыми тефлоновой пленкой (или алюминиевой фольгой) корковыми или полипропиленовыми пробками. Применение полиэтиленовой посуды и резиновых пробок не допускается.

Пробы анализируют в день отбора или консервируют добавлением концентрированной серной кислоты до величины рН 5 по универсальной индикаторной бумаге. Подкисленные пробы хранят при температуре не выше $10\ ^{\circ}\mathrm{C}$ до $12\ \mathrm{cyt}$.

Перед проведением анализа пробу нейтрализуют до рН 7-8 по универсальной индикаторной бумаге 10 %-ным раствором гидрокарбоната натрия.

Осушенные безводным сульфатом натрия гексановые экстракты бутиловых эфиров в стеклянной посуде с притертыми пробками могут храниться в холодильнике до 30 сут.

10 Подготовка к выполнению измерений

10.1 Приготовление растворов и реактивов

10.1.1 Сульфат натрия безводный

Перед использованием сульфат натрия прокаливают в муфельной печи при температуре 350-400 °C в течение 8 ч. Прокаленный сульфат натрия хранят в эксикаторе.

РД 52.24.413-2011

10.1.2 Раствор сульфата натрия, 10 % -ный

Растворяют 22 г безводного сульфата натрия в 200 см³ дистиллированной воды. После приготовления раствор очищают, встряхивая его в делительной воронке с 10 см³ гексана в течение 5 мин. Гексановый слой отбрасывают.

10.1.3 Насыщенный раствор хлорида натрия

Растворяют 360 г хлорида натрия в 1,0 дм³ дистиллированной воды. После приготовления раствор очищают, встряхивая его в делительной воронке с 25 см³ хлороформа в течение 10 мин. Хлороформный слой отбрасывают.

10.1.4 Раствор хлорида натрия, 2 моль/дм³

Растворяют 117 г хлорида натрия в дистиллированной воде, переносят в мерную колбу вместимостью 1000 см³, доводят объём раствора до метки и перемешивают. После приготовления раствор очищают встряхивая его в делительной воронке с 25 см³ хлороформа в течение 10 мин. Хлороформный слой отбрасывают.

10.1.5 Раствор хлорида натрия, 2 моль/дм³, насыщенный бутанолом

В делительной воронке вместимостью 2000 см³ встряхивают 1000 см³ раствора хлорида натрия, 2 моль/дм³, с 80 см³ бутанола в течение 5 мин, затем дают смеси отстояться. Отслоившийся избыток бутанола отбрасывают. Раствор хранят в плотно закрытой склянке.

10.1.6 Раствор гидроксида натрия, 2 моль/дм³

Растворяют 80 г гидроксида натрия в 1,0 дм³ дистиллированной воды. Хранят в полиэтиленовом флаконе.

10.1.7 Раствор соляной кислоты, 2 моль/дм³

Мерным цилиндром вместимостью 250 см³ отмеривают 205 см³ концентрированной соляной кислоты и разбавляют ее 800 см³ дистиллированной воды.

10.1.8 Раствор гидрокарбоната натрия, 10 %-ный

Растворяют 20 г гидрокарбоната натрия в 180 см³ дистиллированной воды. Полученный раствор очищают, встряхивая его в делительной воронке с 15 см³ хлороформа в течение 8-10 мин. После разделения слоёв хлороформ отбрасывают.

10.1.9 Дистиллированная вода, очищенная гексаном

К 1 дм³ дистиллированной воды, помещенной в делительную воронку, добавляют 10 см³ гексана и смесь встряхивают в течение 3 мин. После полного разделения слоёв водный слой помещают в в склянку с притертой пробкой, а гексановый слой отбрасывают.

10.2 Подготовка анионита

Выделенную путём отсева фракцию анионита зернением 0,5-1,0 мм переносят в химический стакан, заливают пятикратным (по объёму) количеством насыщенного раствора хлорида натрия и оставляют на сутки для набухания. После этого жидкость декантируют, заливают анионит пятикратным объемом раствора соляной кислоты, 2 моль/дм³, и оставляют на 2-3 ч. Обработку анионита свежими порциями раствора соляной кислоты повторяют до тех пор, пока последняя не перестанет окрашиваться.

Затем анионит обильно промывают дистиллированной водой, после чего заливают раствором гидроксида натрия, 2 моль/дм³, оставляют на 3 ч, периодически перемешивая. Обработку анионита свежими порциями раствора гидроксида натрия повторяют до тех пор, пока жидкость не перестанет окрашиваться. После этого анионит промывают свежепрокипячённой и быстро охлажденной дистиллированной водой до нейтральной реакции по универсальной индикаторной бумаге.

Отмытый анионит переводят в Cl-форму. Для этого его заливают пятикратным объемом раствора хлорида натрия, 2 моль/дм³, и перемешивают. Через 20 мин жидкость декантируют. Обработку анионита свежими порциями раствора хлорида натрия повторяют 3 раза.

Обработанный таким образом анионит фильтруют и сушат на воздухе в чашках (см. 4.1.23), распределив его тонким слоем. Хранят анионит в склянке с притёртой пробкой. Перед использованием нужное количество анионита заливают пятикратным объемом раствора хлорида натрия 2 моль/дм³ и оставляют на сутки для набухания.

10.3 Подготовка хроматографической колонки для концентрирования далапон-натрия и ТХАН

В колонку для ионообменной хроматографии (см. 4.1.17) помещают 10 г набухшего анионита (см. 10.2). Для этого закреплённую на штативе колонку на одну треть заполняют раствором хлорида натрия, 2 моль/дм³, открывают кран, чтобы жидкость медленно вытекала из колонки, и через воронку вливают в колонку суспензию анионита в растворе хлорида натрия, периодически постукивая по стенкам колонки стеклянной палочкой с резиновым наконечником. Необходимо следить, чтобы над слоем анионита всегда был слой раствора хлорида натрия, который сливают непосредственно перед вводом в колонку анализируемой пробы. Поверх слоя анионита в колонке кладут кружок фильтровальной бумаги.

10.4 Приготовление фильтра для очистки воздуха

Используемый для упаривания экстрактов воздух необходимо очищать, пропуская через фильтр с активным углем. В качестве фильтра применяют склянку для очистки газов типа СПТ. Входной и выходной отростки склянки заполняют медицинской ватой и наполняют склянку активным углем. При этом выходную часть склянки наполняют активным углем так, чтобы его уровень не доходил до выходного отростка примерно на 2 см. После этого входной отросток склянки соединяют с аквариумным микрокомпрессором, а на выходной отросток надевают трубку из силиконовой резины. В другой конец трубки вставляют стеклянную пипетку Пастера. Струя очищенного воздуха, поступающего из пипетки при включении микрокомпрессора, используется для упаривания экстрактов.

10.5 Подготовка набивной колонки

Стеклянную хроматографическую колонку с внутренним диаметром 3 мм и длиной 1,5 - 2 м промывают последовательно ацетоном и гексаном, сушат при температуре от 110 до 120 °C в сушильном шкафу и заполняют носителем с неподвижной фазой SE-30, OV-17 или XE-60.

Для заполнения колонки один ее конец, который в дальнейшем будет подсоединяться к детектору, закрывают тампоном из промытого ацетоном и гексаном стекловолокна и присоединяют к вакуумному насосу через мелкую капроновую сетку. Затем включают насос и заполняют колонку носителем с фазой, добавляя последний небольшими порциями и постукивая колонку палочкой с резиновым наконечником при постоянно работающем насосе так, чтобы носитель заполнял колонку равномерно, без разрывов.

Заполненную стеклянную хроматографическую колонку (далее - набивная колонка) закрывают тампоном из промытой стеклоткани и помещают в термостат колонок хроматографа, подсоединив к испарителю, но не подсоединяя к детектору. Кондиционирование колонки целесообразно проводить следующим образом. Установив расход азота через колонку от 40 до 50 см³ /мин, выдерживают колонку при температуре 60 °C до 70 °C в течение 30 мин. Затем поднимают температуру термостата колонок со скоростью 3 град/мин до температуры 230 °C и при этой температуре кондиционируют набивную колонку в течение 8 ч.

10.6 Подготовка хроматографа

Подготовку хроматографа проводят в соответствии с руководством по его эксплуатации. После кондиционирования набивной колонки её подсо-

единяют к детектору, устанавливают расход газа-носителя через колонку от 35 до 45 см³/мин и проверяют герметичность соединений. Кондиционирование капиллярной колонки проводят в соответствии с рекомендациями производителя в прилагаемом паспорте.

Устанавливают необходимый режим работы хроматографа. После выхода прибора на рабочий режим вводят в хроматограф несколько раз аликвоты градуировочных образцов (по 4-5 мм³ в набивную и по 2 мм³ - в капиллярную колонку) и проверяют эффективность разделения бутиловых эфиров 2,2-дихлорпропионовой и трихлоруксусной кислот.

Условия хроматографирования, обеспечивающие наилучшее разделение пиков, следует устанавливать свои для каждого конкретного хроматографа и колонки, исходя из приведенных ниже рекомендаций.

Для набивной колонки:

- температура колонкиот 100 °C до 110 °C;
- температура детектораот 240 °C до 250 °C;
- расход азота через колонкуот 30 до 40 см³ /мин;
- расход азота на поддув детектора в соответствии с руководством по эксплуатации данного хроматографа;
 - скорость диаграммной ленты (при использовании самописца)
 -240 мм/ч;
- рабочий предел измерений на усилителе в зависимости от измеряемых концентраций.

Для капиллярной колонки:

- температура испарителяот 140 °C до 145 °C;
- температура колонки:начальная от $60~^{\circ}\text{C}$ до 70°C ,
 -конечная от 160 °C до 170 °C,

- расход азота на поддув детектора в соответствии с руководством по эксплуатации данного хроматографа;
 - скорость диаграммной ленты (при использовании самописца)
 - 240 мм/ч;
- рабочий предел измерений на усилителе в зависимости от измеряемых концентраций.

10.7 Приготовление градуировочных растворов далапон-натрия и **TXAH**

- 10.7.1 Градуировочные растворы далапон-натрия и ТХАН готовят из аттестованных растворов АР-ДХАН и АР-ТХАН с массовой концентрацией 1,00 мг/дм³, приготовление которых описано в Приложении А.
- 10.7.2 Для приготовления основного раствора смеси далапон-натрия и ТХАН с массовой концентрацией каждого компонента 0,100 мг/см³ пипетками с одной отметкой отбирают по 5,0 см³ аттестованных растворов АР-ДХАН и АР-ТХАН, помещают их в одну мерную колбу вместимостью 50 см³, доводят объём до метки на колбе бутанолом и перемешивают.

Основной раствор смеси далапон-натрия и ТХАН хранят в плотно закрытой склянке в холодильнике не более 2 мес.

10.7.3 Градуировочные растворы далапон-натрия и ТХАН готовят из основного раствора их смеси или из аттестованных растворов АР-ДХАН и АР-ТХАН, отмеряя пипетками объёмы растворов, указанные в таблице 3, в мерные колбы вместимостью 50 см³. До объёма 50 см³ смесь доводят дистиллированной водой, очищенной гексаном. Приписываемые каждому гербициду значения его массовой концентрации в градуировочных растворах приведены таблице 3. Градуировочные растворы далапон-натрия и ТХАН хранят в холодильнике не более 10 сут.

10.8 Приготовление градуировочных образцов

Градуировочные образцы, содержащие смесь бутиловых эфиров 2,2-дихлорпропионовой и трихлоруксусной кислоты готовят из градуировочных растворов далапон-натрия и ТХАН (см. 10.7). Для этого в коническую колбу с притёртой пробкой вместимостью 50 см³ пипеткой вносят 5,0 см³ того или иного градуировочного раствора и далее осуществляют операции по 11.3-11.4.

Таблица 3 — Схема приготовления градуировочных образцов далапон-натрия и ТХАН

Номер гра-	Растворы, используемые	Объем раство-	Приписанная градуировочно-
дуировоч-	для приготовления	ра, вносимый в	му образцу массовая концен-
ного об-	градуировочных	мерную колбу,	трация концентрация далапон-
разца	растворов	cm ³	натрия или ТХАН, мг/см ³
1	Основной раствор смеси	0,2	0,0004
2	То же	0,5	0,0010
3	"_"	1,0	0,0020
4	"_"	2,0	0,0040
5	"_"	5,0	0,010
6	Аттестованные растворы	по 1,0 каждо-	0,020
	АР-ДХАН и АР-ТХАН	ГО	

Полученные гексановые экстракты используют в качестве градуировочных образцов. Высоты или площади пиков на хроматограммах приготовленных таким образом бутиловых эфиров 2,2-дихлорпропионовой и трихлоруксусной кислот соответствуют концентрациям далапон-натрия и ТХАН, приведенным в таблице 3.

Градуировочные образцы хранят в холодильнике не более 5 сут.

11 Выполнение измерений

11.1 Холостое измерение

Холостое измерение проводят с целью проверки чистоты реактивов и материалов, используемых в анализе. Его проводят перед анализом проб воды.

Для выполнения холостого измерения 40 см³ раствора хлорида натрия, насыщенного бутанолом, пропускают через колонку с анионитом и далее обрабатывают согласно 11.3-11.5.

Если пики на хроматограмме холостого опыта совпадают по временам удерживания с пиком хотя бы одного из определяемых гербицидов, либо наблюдается высокое значение фонового сигнала, то необходимо путём постадийного исследования установить какой из реактивов или материалов загрязнён и провести его очистку или заменить этим же реактивом, но из другой партии. Растворители очищают перегонкой, растворы и материалы — промыванием (экстракцией) растворителями.

11.2 Извлечение из воды и концентрирование далапон-натрия и **TXAH**

Пробу природной воды объёмом 1,0 дм³ с помощью мерного цилиндра осторожно по палочке, чтобы не нарушить слой сорбента, постепенно вносят в хроматографическую колонку с анионитом. Открывают кран колонки и устанавливают скорость пропускания воды через колонку 15-20 см³/мин. Прошедшую через колонку воду отбрасывают (воду из колонки удаляют полностью!), а сорбированные на анионите трихлорацетат и 2,2-дихлорпропионат-ионы элюируют из колонки раствором хлорида натрия, насыщенного бутанолом. Для этого в колонку осторожно по палочке вносят 40 см³ раствора хлорида натрия, насыщенного бутанолом, и устанавливают скорость элюирования от 2 до 3 см³/мин. Элюат собирают в мерный цилиндр с притертой пробкой вместимостью 50 см³. После того, как добавленный раствор вытечет из колонки, добавляют еще 10-12 см³ того же раствора и с той же скоростью продолжают элюирование до тех

пор, пока объем элюата в мерном цилиндре не достигнет объема 50 см³. Цилиндр закрывают и перемешивают его содержимое.

11.3 Этерификация

Отбирают пипеткой аликвоту элюата объёмом 5,0 см³ и помещают её в сухую термостойкую коническую колбу с притёртой пробкой вместимостью 50 см³. Добавляют 3,0 см³ бутилового спирта. Затем осторожно, по стенкам колбы, при непрерывном помешивании приливают к пробе 10 см³ концентрированной серной кислоты, закрывают колбу притёртой пробкой и оставляют на 30 мин, периодически помешивая содержимое колбы круговыми движениями. Дополнительного нагревания смеси не требуется, т.к. выделившейся при добавлении серной кислоты теплоты достаточно для осуществления реакции этерификации.

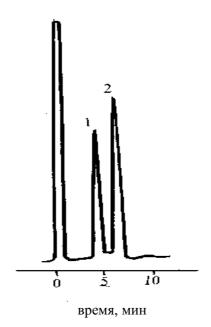
11.4 Извлечение бутиловых эфиров 2,2-дихлорпропионовой и трихлоруксусной кислот

Колбу с реакционной смесью охлаждают до комнатной температуры, добавляют в нее 5 см³ гексана и осторожно перемешивают содержимое колбы круговыми движениями в течение 3 мин. Затем содержимое колбы переносят в делительную воронку вместимостью 25 или 50 см³, закрывают воронку пробкой и встряхивают в течение 5 мин.

После полного разделения слоёв (через 5-7 мин) водный слой сливают в ту же колбу, в которой находилась реакционная смесь, а гексановый экстракт переносят в другую делительную воронку вместимостью 25 или 50 см³, куда предварительно вносят 5 см³ 10 %-ного раствора сульфата натрия.

Реакционную смесь из колбы вновь переносят в первую делительную воронку и повторяют экстракцию 5 см³ гексана. Второй экстракт объединяют с первым во второй делительной воронке, закрывают последнюю пробкой и несильно встряхивают содержимое 10-15 раз. После полного разделения слоёв водный слой отбрасывают, а гексановый экстракт фильтруют через 2,0-2,5 г безводного сульфата натрия, помещенного в воронку диаметром 36 мм на подложку из ваты, промытой гексаном. Делительную воронку ополаскивают дважды по 1 см³ гексана, пропуская промывные порции гексана через тот же слой безводного сульфата натрия, который затем дополнительно промывают 1,0-1,5 см³ гексана. Весь фильтрат собирают в градуированную пробирку с притёртой пробкой номинальной вместимостью 10 см³.

Осушенный фильтрат концентрируют до объёма 5,0 см³ под струёй азота или очищенного воздуха при комнатной температуре.


11.5 Хроматографирование

В испаритель хроматографа вводят 2 мм³ (при использовании капиллярной колонки) или 5 мм³ (при использовании набивной колонки) одного из градуировочных образцов (см. 10.8) и записывают хроматограмму. Устанавливают времена удерживания определяемых компонентов по результатам 3 измерений. Этот параметр следует проверять ежедневно после выхода хроматографа на рабочий режим.

Характерные хроматограммы градуировочных образцов, содержащих бутиловые эфиры 2,2-дихлорпропионовой и трихлоруксусной кислот, представлены на рисунках 1 и 2.

Затем в испаритель хроматографа вводят такой же объем гексанового экстракта, полученного при анализе пробы воды. Далапон-натрий и ТХАН идентифицируют, сравнивая времена удерживания их бутиловых эфиров на хроматограмме градуировочного образца с временами удерживания пиков на хроматограммах проб. Объемы вводимых в хроматограф аликвот градуировочного образца и пробы должны быть одинаковы.

При выполнении хроматографического анализа следует использовать для идентификации и количественных измерений градуировочные образцы, для которых высоты (площади) пиков на хроматограммах наиболее близки к высотам (площадям) соответствующих пиков на хроматограммах экстрактов проб.

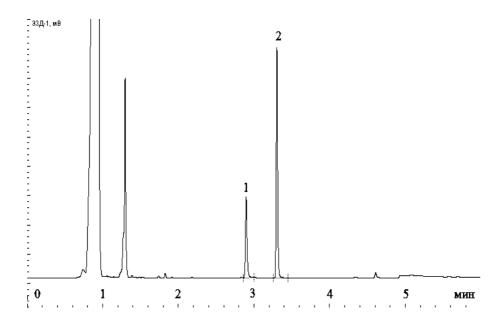

1 - бутиловый эфир 2,2-дихлорпропионовой кислоты; 2 - бутиловый эфир трихлоруксусной кислоты

Рисунок 1 - Хроматограмма градуировочного образца при использовании набивной колонки

РД 52.24.413-2011

Если высота (площадь) пика далапон-натрия или ТХАН на хроматограмме экстракта пробы меньше высоты (площади) соответствующего пика на хроматограмме градуировочного образца \mathbb{N}_2 3, рекомендуется упарить экстракт до объема 2,0 см³ и повторить измерения.

Если высота (площадь) пика далапон-натрия или ТХАН на хроматограмме экстракта пробы превышает высоту (площадь) соответствующего пика на хроматограмме градуировочного образца \mathbb{N}_2 6 (с наибольшей концентрацией), следует разбавить экстракт таким образом, чтобы концентрация определяемого компонента в разбавленном экстракте была ниже его концентрации в образце \mathbb{N}_2 6, но выше концентрации в образце \mathbb{N}_2 4. Для этого сухой чистой градуированной пипеткой вместимостью 1 или \mathbb{N}_2 см³ отбирают необходимую аликвоту экстракта, помещают ее в градуированную пробирку вместимостью 5 см³, доводят до 5,0 см³ гексаном и перемешивают.

1 - бутиловый эфир 2,2-дихлорпропионовой кислоты; 2 - бутиловый эфир трихлоруксусной кислоты

Рисунок 2 - Хроматограмма градуировочного образца при использовании капиллярной колонки

11.6 Определение коэффициента потерь

В процессе проведения процедуры анализа проб воды происходит некоторая потеря далапон-натрия и ТХАН. Во избежание получения заниженных результатов, в формулу, по которой рассчитывают концентрацию далапон-натрия и ТХАН, введен коэффициент b, учитывающий эти потери. Величина потерь зависит, главным образом, от полноты сорбции определяемых веществ анионитом и их последующего элюирования, что в

свою очередь может быть обусловлено типом анионита, составом анализируемой воды, ее минерализацией и т.д.

Для определения коэффициента потерь в шесть химических стаканов вносят по $1,0\,\,\mathrm{дm^3}$ воды определенного типа. В три стакана пипеткой добавляют по $2,0\,\,\mathrm{cm^3}$ основного раствора смеси далапон-натрия и ТХАН с концентрацией каждого вещества $0,100\,\,\mathrm{mr/cm^3}$ и перемешивают.

Анализируют пробы воды, как с добавками, так и без добавок, в соответствии с 11.2-11.5. Рассчитывают коэффициенты потерь далапон-натрия или ТХАН по формуле

$$b = \frac{\tilde{N}_{\ddot{a}}}{X' - X} , \qquad (1)$$

где C_{π} – массовая концентрация добавки далапон-натрия или ТХАН к пробе воды, мг/дм³;

- X' массовая концентрация далапон-натрия или ТХАН в пробе воды с добавкой (среднее арифметическое из трех измерений), мг/дм³;
- X массовая концентрация далапон-натрия или ТХАН в пробе воды без добавки (среднее арифметическое из трех измерений), $M\Gamma/DM^3$.

Массовую концентрацию далапон-натрия или ТХАН в пробах воды с добавками и без добавок X' и X, соответственно, находят по формуле (2) при b=1.

Коэффициенты потерь определяют для каждого типа воды в случае существенного различия в их минерализации, содержании органических веществ (по ХПК или цветности). Ориентировочные величины b, полученные при метрологической аттестации методики, составляют для далапоннатрия 1,20, для ТХАН - 1,18.

11.7 Устранение мешающих влияний

При анализе вод с минерализацией менее 4 г/дм³ существенного мешающего влияния на выполнение измерений массовой концентрации далапон-натрия и ТХАН по настоящей методике не выявлено. При возникновении сомнений в однозначной идентификации определяемых компонентов следует провести измерения на колонке с фазой, имеющей другую полярность.

12 Вычисление и оформление результатов измерений

12.1 Массовую концентрацию далапон-натрия или ТХАН в анализируемой пробе воды X, мг/дм³, рассчитывают по формуле

$$\tilde{O} = \frac{C_{\tilde{n}\tilde{o}'} S_{\tilde{o}'} V_1 V_2 b}{S_{c\tilde{o}'} V_3 V_4} \eta, \qquad (2)$$

или

$$\tilde{O} = \frac{\tilde{N}_{\tilde{n}\dot{o}'} h_{\tilde{o}'} V_1 V_2 b}{h_{c\dot{o}'} V_3 V_4} \eta, \qquad (3)$$

- где C_{cr} концентрация далапон-натрия или ТХАН в градуировочном образце, мг/см³;
 - S_x (h_x) площадь, cm^2 , (высота, cm) пика бутилового эфира 2,2-дихлор-пропионовой или трихлоруксусной кислоты на хроматограмме пробы;
 - V_1 объём элюата пробы, см³;
 - V_2 объём хроматографируемого экстракта пробы, см³;
 - $S_{ct}(h_{ct})$ площадь, см², (высота, см) пика бутилового эфира 2,2-дихлор-пропионовой или трихлоруксусной кислоты на хроматограмме градуировочного образца;
 - V_3 объём хроматографируемого экстракта градуировочного образца, см 3 ;
 - V_4 объём пробы воды, взятый для анализа, дм³;
 - b коэффициент, учитывающий потери далапон-натрия или ТХАН в процессе анализа;
 - η степень разбавления экстракта (если разбавление не проводилось, η =1).
- 12.2 Результат измерения в документах, предусматривающих его использование, представляют в виде:

$$X \pm \Delta$$
, мкг/дм³ (P = 0.95), (4)

где Δ - характеристика погрешности измерения для данной массовой концентрации далапон-натрия или ТХАН (см. таблицу 2).

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности, последние не должны содержать более двух значащих цифр.

12.3 Допустимо представлять результат в виде

$$X\pm\Delta_{\pi}$$
 (P=0,95) при условии $\Delta_{\pi}<\Delta$, (5)

где $\pm \Delta_{\scriptscriptstyle \rm J}$ - границы характеристик погрешности результатов измерений, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений.

Примечание - Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения Δ_{π} = 0,84· Δ с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

12.4 Результаты измерений оформляют протоколом или записью в журнале по формам, приведенным в Руководстве по качеству лаборатории.

13 Контроль качества результатов измерений при реализации методики в лаборатории

13.1 Общие положения

13.1.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

-оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

-контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

13.1.2 Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируют в Руководстве по качеству лаборатории.

13.2 Алгоритм оперативного контроля процедуры выполнения измерений с использованием метода добавок

- 13.2.1 Для проведения оперативного контроля погрешности в два стакана помещают по 1,0 дм³ природной или очищенной сточной воды. В один из стаканов вносят добавку далапон-натрия и ТХАН, используя основной раствор смеси (см. 10.2.2) или аттестованные растворы АР-ДХАН и АР-ТХАН (см. приложение А). Добавка не должна превышать концентрацию далапон-натрия и ТХАН в исходной пробе более чем в два раза. Если в исходной пробе далапон-натрия и ТХАН отсутствуют, используют добавку, равную удвоенной минимально определяемой концентрации.
- 13.2.2 Результат контрольной процедуры K_{κ} , мг/дм³, рассчитывают по формуле

$$\mathbf{K}_{\kappa} = \left| \mathbf{X}' - \mathbf{X} - \mathbf{C}_{\pi} \right|, \tag{6}$$

13.2.3 Норматив контроля погрешности K, мкг/дм³ рассчитывают по формуле

$$K = \sqrt{(\Delta_{JX'})^2 + (\Delta_{JX})^2}, \qquad (7)$$

- где $\Delta_{\pi x'}$ значения характеристики погрешности результатов измерений установленные при реализации методики в лаборатории, соответствующие массовой концентрации гербицида в пробе с добавкой, мг/дм³;
 - $\Delta_{\rm ЛX}$ значения характеристики погрешности результатов измерений, установленные при реализации методики в лаборатории, соответствующие массовой концентрации гербицида в рабочей пробе, мг/дм³.

Примечание — Допустимо для расчета норматива контроля использовать значения характеристик погрешности, полученные расчетным путем по формулам $\Delta_{\pi x'}=0.84\cdot\Delta_{x'}$ и $\Delta_{\pi x}=0.84\cdot\Delta_{x}$.

13.2.4 Если результат контрольной процедуры удовлетворяет условию

$$|K_{\kappa}| \leq K$$
, (8)

процедуру анализа признают удовлетворительной.

При невыполнении условия (8) контрольную процедуру повторяют. При повторном невыполнении условия (8), выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

14 Проверка приемлемости результатов, полученных в условиях воспроизводимости

14.1 Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости R. При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение. Значение предела воспроизводимости рассчитывают по формуле

$$R = 2,77 \sigma_R.$$
 (9)

14.2 При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно разделу 5 ГОСТ Р ИСО 5725 - 6 или МИ 2881.

14.3 Проверка приемлемости проводится при необходимости сравнения результатов измерений, полученных двумя лабораториями.

Приложение А (рекомендуемое)

Методика приготовления аттестованных растворов AP-ДХАН и AP-ТХАН для установления градуировочных характеристик приборов и контроля точности результатов измерений массовой концентрации гербицидов далапон-натрия и трихлорацетата натрия газохроматографическим методом

А.1 Назначение и область применения

Настоящая методика регламентирует процедуру приготовления аттестованных растворов AP-ДХАН и AP-ТХАН, предназначенных для установления градуировочных характеристик приборов и контроля точности результатов измерений массовой концентрации далапон-натрия и ТХАН в природных и очищенных сточных водах газохроматографическим методом.

А.2 Метрологические характеристики

Аттестованное значение массовой концентрации далапон-натрия и ТХАН в аттестованных растворах AP-ДХАН и AP-ТХАН составляет $1,00~\rm Mг/cm^3$, границы погрешности установления аттестованного значения массовой концентрации при принятой вероятности $P=0,95~\rm pabhbb{\pm}0,030~\rm Mr/cm^3$.

А.3 Средства измерений, вспомогательные устройства, реактивы

- А.3.1 Весы лабораторные высокого (II) класса точности по ГОСТ Р 53228-2008.
- А.3.2 Колбы мерные 2-го класса точности исполнения 2 по ГОСТ 1770-74 вместимостью 50 см³ -2 шт.
- А.3.3 Пипетка градуированная 2-го класса точности исполнения 2 по ГОСТ 29227-91 вместимостью $5 \text{ cm}^3 1 \text{ шт}$.
- А.3.4 Стаканчики для взвешивания (бюксы) CB-14/8 или CB 19/9 по Γ OCT 25336-82 2 шт.
- А.3.5 Воронки лабораторные тип В по ГОСТ 25336-82, диаметром 36 мм 2 шт.

А.4 Исходные компоненты аттестованных растворов

- А.4.1 Натрий 2,2-дихлорпропионат по ТУ 6-09-08-1752-84, ч., или кислота 2,2-дихлорпропионовая по ТУ 6-09-08-1752-84, ч., с содержанием основного вещества не менее 97 %.
- А.4.2 Трихлорацетат натрия, ОСО 113-04-095-91 или трихлоруксусной кислоты натриевая соль по ТУ 6-09-11-840-77, ч., или трихлоруксусная кислота по ТУ 6-09-1926-77, ч., с содержанием основного вещества не менее 97 % .
 - А.4.3 Бутанол-1 (бутиловый спирт) по ГОСТ 6006-78, ч.д.а.

А.5 Процедура приготовления аттестованных растворов

- А.5.1 Перед проведением операций по приготовлению растворов необходимо исходные компоненты аттестованных растворов (см. п. А.4) выдержать в течение двух часов в рабочем помещении.
- А.5.2 Для приготовления аттестованного раствора АР-ДХАН на весах высокого класса точности отвешивают с точностью до четвертого знака после запятой 0,050 г натрия 2,2-дихлорпропионата или 0,043 г 2,2-дихлорпропионовой кислоты. Количественно переносят навеску из бюкса через воронку в мерную колбу вместимостью 50 см³, тщательно промывая бюкс бутанолом из пипетки, растворяют препарат, затем доводят до метки бутанолом и перемешивают.

Полученному раствору приписывают концентрацию далапон-натрия $1,00~{\rm MF/cm^3}.$

А.5.3 Для приготовления аттестованного раствора AP-TXAH на весах высокого класса точности отвешивают с точностью до четвертого знака после запятой 0,050 г трихлорацетата натрия или 0,044 г трихлоруксусной кислоты. Количественно переносят навеску из бюкса через воронку в мерную колбу вместимостью 50 см³, тщательно промывая бюкс бутанолом из пипетки, растворяют препарат, затем доводят до метки бутанолом и перемешивают.

Полученному раствору приписывают концентрацию ТХАН 1,00 мг/см³.

А.6 Расчет метрологических характеристик аттестованных растворов

Аттестованное значение массовой концентрации далапон-натрия или ТХАН С, мг/см³, рассчитывают по формуле

$$\tilde{N} = \frac{m \cdot 1000 \cdot f}{V}, \tag{A.1}$$

где т – масса навески вещества, г;

f – коэффициент пересчета массы кислоты на массу соответствующей натриевой соли (если для приготовления раствора использовали соответствующую кислоту); f=1,16 для 2,2–дихлорпро-пионовой кислоты и f=1,14 для трихлоруксусной кислоты);

V – вместимость мерной колбы, см³.

Расчет погрешности приготовления аттестованных растворов, Δ , мг/см³ выполняют по формуле

$$\Delta = \tilde{N} \sqrt{\left(\frac{\Delta_{\mu}}{\mu}\right)^2 + \left(\frac{\Delta_{m}}{m}\right)^2 + \left(\frac{\Delta_{V}}{V}\right)^2} , \qquad (A.2)$$

где Δ_{μ} — предельное значение возможного отклонения массовой доли основного вещества в реактиве от приписанного значения μ , %;

 μ – массовая доля основного вещества гербицида, приписанная реактиву, %;

 Δ_m – предельная возможная погрешность взвешивания, г;

 $\Delta_{
m V}$ — предельное значение возможного отклонения вместимости мерной колбы от номинального значения, см 3 .

Погрешность приготовления аттестованных растворов при массовой доле основного вещества в используемых препаратах не менее 97 % равна:

$$\Delta = 1,00 \cdot \sqrt{\left(\frac{3}{100}\right)^2 + \left(\frac{0,0002}{0,050}\right)^2 + \left(\frac{0,12}{50}\right)^2} = 0,030 \text{ Mp/cm}^3.$$

А.7 Требования безопасности

Необходимо соблюдать общие требования техники безопасности при работе в химических лабораториях. Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных ПДК в соответствии с ГОСТ 12.1.005.

А.8 Требования к квалификации операторов

Аттестованные растворы может готовить инженер или лаборант со средним специальным образованием, прошедший специальную подготовку и имеющий стаж работы в химической лаборатории не менее года.

А.9 Требования к маркировке

На склянки с аттестованными растворами должны быть наклеены этикетки с указанием условного обозначения аттестованного раствора, величины массовой концентрации гербицида в растворе, погрешности ее установления и даты приготовления.

А.10 Условия хранения

Аттестованные растворы АР-ДХАН и АР-ТХАН следует хранить в плотно закрытой склянке в холодильнике не более 3 мес.

Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ГИДРОХИМИЧЕСКИЙ ИНСТИТУТ

344090, г. Ростов-на-Дону	Факс: (8632) 22-44-70
пр. Стачки, 198	Телефон (8632) 22-66-68
	E-mail ghi@aaanet.ru

СВИДЕТЕЛЬСТВО

об аттестации методики выполнения измерений № 67.24-2010

Методика выполнения измерений массовой концентрации далапоннатрия и трихлорацетата натрия в водах газохроматографическим методом,

разработанная Государственным учреждением Гидрохимический институт (ГУ ГХИ)

и регламентированная РД 52.24.413-2011 Массовая концентрация далапон-натрия и трихлорацетата натрия в водах. Методика выполнения измерений газохроматографическим методом,

аттестована в соответствии с ГОСТ Р 8.563-96.

Аттестация осуществлена по результатам экспериментальных исследований.

1. В результате аттестации МВИ установлено, что МВИ соответствует предъявляемым к ней метрологическим требованиям и обладает метрологическими характеристиками, приведенными в таблицах 1,2:

Таблица 1 - Диапазон измерений, значения характеристик погрешности и ее составляющих при принятой вероятности Р=0,95

Герби-	Диапазон	Показатель по-	Показатель вос-	Показатель	Показатель
цид	измерений	вторяемости	производимости	правильности	точности
	массовых	(среднеквадра-	(среднеквадрати-	(границы си-	(границы
	концентра-	тическое откло-	ческое отклоне-	стематической	погрешно-
	ций	нение повторя-	ние воспроизво-	погрешности)	сти)
		емости)	димости)		
	X, мг/дм ³	$\sigma_{\rm r}$, мг/дм ³	σ_R , мг/дм ³	$\pm \Delta_{\rm c}$, мг/дм ³	$\pm \Delta$, мг/дм ³
Дала- пон- натрий	От 0,02 до 1,00 включ.	0,001+0,08·X	0,001+0,12·X	0,001+0,10·X	0,003+0,24·X
ТХАН	От 0,02 до 1,00 включ.	0,001+0,09·X	0,002+0,13·X	0,002+0,10·X	0,005+0,26·X

Таблица 2 - Диапазон измерений, значения пределов повторяемости и воспроизводимости при принятой вероятности Р=0,95

	Диапазон	Предел повторяемости	Предел воспроизво-
Гербицид	измерений	(для двух результатов па-	димости (для двух
	массовых	раллельных определений)	результатов
	концентраций	r, мг/дм ³	измерений)
	X , $M\Gamma/дM^3$		R, мг/дм ³
Далапон-натрий	От 0,02до 1,00	0,003+0,22·X	0,003+0,33·X
	включ.	0,003+0,22*X	
TXAH	От 0,02до 1,00	0.002±0.25.V	0,006+0,36·X
	включ.	0,003+0,25·X	

- 2 При реализации методики в лаборатории обеспечивают:
- оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости. внутрилабораторной прецизионности, погрешности).

Алгоритм оперативного контроля исполнителем процедуры выполнения измерений приведен в РД 52.24.413-2011.

Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируют в Руководстве по качеству лаборатории.

Дата выдачи свидетельства 7.05.2010.

Директор А.М.

Никаноров

Главный метролог

А.А. Назарова