МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

РУКОВОДЯЩИЙ ДОКУМЕНТ

РД 52.24.394— 2012

МАССОВАЯ КОНЦЕНТРАЦИЯ АММОНИЙНОГО АЗОТА В ВОДАХ Методика измерений потенциометрическим методом с ионселективными электродами

Ростов-на-Дону 2012

Предисловие

- 1 PA3PAБОТАН федеральным государственным бюджетным учреждением «Гидрохимический институт» (ФГБУ «ГХИ»)
- 2 РАЗРАБОТЧИКИ Л.В. Боева, канд. хим. наук, Тамбиева Н.С., Ворона М.Л.
 - 3 СОГЛАСОВАН с ФГБУ «НПО «Тайфун» 17.02.2012 и УМЗА Росгидромета 02.04.2012
 - 4 УТВЕРЖДЕН Заместителем Руководителя Росгидромета 03.04.2012
- 5 ATTECTOBAH ФГБУ «ГХИ», свидетельство об аттестации методики измерений № 394.01.00175-2010 от 20.12.2010
- 6 ЗАРЕГИСТРИРОВАН ЦМТР ФГБУ «НПО «Тайфун» за номером РД 52.24.394-2012 от 18.04.2012

Внесен в Федеральный реестр методик выполнения измерений, применяемых в сферах распространения государственного метрологического контроля и надзора за номером ФР.1.31.2013.13977

7 B3AMEH РД 52.24.394-95 Методические указания. Методика выполнения измерений массовой концентрации ионов аммония в поверхностных водах суши потенциометрическим методом с ионселективным электродом

Содержание

1 Область применения	1
2 Нормативные ссылки	
3 Требования к показателям точности измерений	
4 Требования к средствам измерений, вспомогательным устройствам,	
реактивам	3
4.1 Средства измерений, вспомогательные устройства	
4.2 Реактивы и материалы	
5 Метод измерений	
6 Требования безопасности, охраны окружающей среды	
7 Требования к квалификации операторов	
8 Требования к условиям измерений	
9 Отбор и хранение проб	
10 Подготовка к выполнению измерений	
10.1 Приготовление растворов и реактивов	
10.2 Подготовка установки для отгонки аммиака	
10.3 Приготовление градуировочных образцов	
10.4 Подготовка иономера, измерительного и вспомогательного	•
электродов к работе	11
10.5 Установление градуировочной зависимости по варианту 1	
10.6 Установление градуировочной зависимости по варианту 2	
10.7 Контроль стабильности градуировочной характеристики	
11 Порядок выполнения измерений	
11.1 Выполнение измерений по варианту 1	
11.2 Выполнение измерений по варианту 2	
11.3 Мешающие влияния и их устранения	
12 Вычисление результатов измерений	
13 Контроль качества результатов измерений при реализации методики в	. 10
лаборатории	18
13.1 Общие положения	
13.2 Алгоритм оперативного контроля повторяемости	
13.3 Алгоритм оперативного контроля процедуры выполнения	. 10
измерений с использованием метода добавок совместно	
с методом разбавления проб	19
13.4 Алгоритм оперативного контроля процедуры выполнения	. 10
измерений с использованием метода добавок	20
14 Проверка приемлемости результатов, полученных в условиях	. 20
воспроизводимости	.21
Приложение А (обязательное) Методика приготовления аттестованных	. ∠ 1
растворов аммонийного азота AP1-NH ₄ и AP2-NH ₄	. 22
Приложение Б (обязательное) Подготовка и регенерация колонки	. 22
с катионитом	. 27
с катионитомПриложение В (рекомендуемое) Перевод значений рNH₄ в массовую	. 41
концентрацию аммонийного азота	28
Rongompagnio aivinionininio asora	. 20

Введение

Аммонийный азот в водах находится, в основном, в растворенном состоянии в виде ионов аммония и недиссоциированных молекул $NH_3 \cdot H_2O$, количественное соотношение которых имеет важное экологическое значение и определяется величиной pH и температурой воды. В то же время некоторая часть аммонийного азота может мигрировать в сорбированном состоянии на минеральных и органических взвесях, а также в виде различных комплексных соединений.

Присутствие в незагрязненных поверхностных водах ионов аммония связано, главным образом, с процессами биохимического разложения белковых веществ, мочевины, дезаминирования аминокислот. Естественными источниками аммиака служат прижизненные выделения гидробионтов. Кроме того, ионы аммония могут образовываться в результате анаэробных процессов восстановления нитратов и нитритов.

Источником антропогенного загрязнения водных объектов ионами аммония являются сточные воды многих отраслей промышленности, бытовые сточные воды, стоки с сельскохозяйственных угодий.

Сезонные колебания концентрации ионов аммония характеризуются обычно понижением весной и в начале лета, в период интенсивной фотосинтетической деятельности фитопланктона, и повышением в конце лета — начале осени при усилении процессов бактериального разложения органического вещества в периоды отмирания водных организмов, особенно в зонах их скопления: в придонном слое водоема, в слоях повышенной плотности фито- и бактериопланктона. В осенне-зимний период повышенное содержание ионов аммония связано с продолжающейся минерализацией органических веществ в условиях слабого потребления ионов аммония фитопланктоном и уменьшения скорости их биохимического окисления из-за низких температур.

Аммонийные ионы в водной среде неустойчивы. В присутствии кислорода они легко подвергаются биохимическому и фотохимическому окислению до нитритов, затем до нитратов. По этой причине в малозагрязненных водных объектах обычно содержание аммонийного азота не превышает тысячных долей миллиграммов в кубическом дециметре, иногда повышаясь до сотых долей в осенне-зимний период. В некоторых водных объектах, содержащих значительное количество органического вещества, в конце длительного подледного периода при дефиците кислорода содержание аммонийного азота может возрастать до десятых долей миллиграммов в кубическом дециметре. Повышенное содержание ионов аммония указывает на ухудшение санитарного состояния водного объекта, причем, поскольку аммиак более токсичен, чем ионы аммония, опасность аммонийного азота для гидробионтов возрастает с повышением рН воды.

Увеличение концентрации аммонийного азота в весенне-летний период, как правило, является показателем свежего загрязнения.

Для водных объектов рыбохозяйственного назначения предельно допустимая концентрация (далее - ПДК) ионов аммония — 0,4 мг/дм³, аммиака — 0,04 мг/дм³ по азоту; для объектов хозяйственно-питьевого и культурнобытового назначения ПДК в пересчете на азот равна 1,5 мг/дм³.

РУКОВОДЯЩИЙ ДОКУМЕНТ

МАССОВАЯ КОНЦЕНТРАЦИЯ АММОНИЙНОГО АЗОТА В ВОДАХ Методика измерений потенциометрическим методом с ионселективными электродами

Дата введения – 2012-06-01

1 Область применения

- 1.1 Настоящий руководящий документ устанавливает методику измерений (далее методика) массовой концентрации аммонийного азота в пробах природных и очищенных сточных вод потенциометрическим методом в диапазоне от 0,30 до 14,0 мг/дм³ с ионселективным пленочным электродом, реагирующим на ионы аммония (вариант 1) и от 0,05 до 14,0 мг/дм³ с газочувствительным ионселективным электродом, реагирующим на молекулы аммиака (вариант 2).
- 1.2 При анализе проб воды с массовой концентрацией аммонийного азота, превышающей 14,0 мг/дм³, допускается выполнение измерений после разбавления пробы безаммиачной водой таким образом, чтобы массовая концентрация аммонийного азота в разбавленной пробе находилась в пределах приведенного в 1.1 диапазона концентраций
- 1.3 Настоящий руководящий документ предназначен для применения в лабораториях, осуществляющих анализ природных и очищенных сточных вод.

2 Нормативные ссылки

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

РД 52.24.394-2012

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

МИ 2881-2004 Рекомендация. ГСИ. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа.

Примечание — Ссылки на остальные нормативные документы приведены в разделах 4, А.3, А.4 (приложение A).

3 Требования к показателям точности измерений

3.1 При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведенных в таблице 1.

Таблица 1 – Диапазон измерений, значения характеристик погрешности и ее составляющих при принятой вероятности Р=0,95

Диапазон	Показатель по-	Показатель вос-	Показатель	Показатель	
измерений	вторяемости	производимости	правильности	точности	
массовых	(среднеквадра-	(среднеквадра-	(границы сис-	(границы	
концентра-	тическое откло-	тическое откло-	тематической	погрешности)	
ций	нение повторя-	нение воспроиз-	погрешности)		
аммонийного	емости)	водимости)			
азота					
X, мг/дм ³	σ _r , мг/дм³	σ _R , мг/дм ³	±Δ _c , мг/дм ³	±∆, мг/дм ³	
		Вариант 1			
От 0,30 до	0,02+0,025·X	0,02+0,082·X	0,14·X	0,02+ 0,26·X	
14,0 включ.	0,0210,0237	0,0210,0027	0,147	0,021 0,20 X	
Вариант 2					
От 0,050 до	0,007+0,0071·X	0,002+0,070·X	0,001+0,033·X	0,005+0,14·X	
14,0 включ.	0,007 10,007 17	0,00210,0701	0,00110,033	0,000 10,14°X	

При выполнении измерений в пробах с массовой концентрацией аммонийного азота свыше 14,0 мг/дм 3 после соответствующего разбавления погрешность измерения массовой концентрации аммонийного азота $\pm \Delta$, мг/дм 3 , в исходной пробе находят по формуле

$$\pm \Delta = (\pm \Delta_1) \cdot \eta, \tag{1}$$

где $\pm \Delta_1$ – показатель точности измерения массовой концентрации аммонийного азота в разбавленной пробе, рассчитанный по зависимостям, приведенным в таблице 1;

η – степень разбавления.

Предел обнаружения аммонийного азота по варианту 1 составляет $0,1 \text{ мг/дм}^3$; по варианту 2 - $0,03 \text{ мг/дм}^3$.

- 3.2 Значения показателя точности методики используют при:
- оформлении результатов измерений, выдаваемых лабораторией;
- оценке деятельности лаборатории на качество проведения измерений;
- оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

4 Требования к средствам измерений, вспомогательным устройствам, реактивам

4.1 Средства измерений, вспомогательные устройства

- 4.1.1 Иономер любого типа (например, И-500 по ТУ 4215-002-18294344-02; «Экотест-2000» по ТУ 4215-005-41541647-99 и др.).
- 4.1.2 Весы высокого (II) класса точности по ГОСТ Р 53228-2008, максимальная нагрузка не более 200 г, дискретность отсчета не более 0,0002 г.
- 4.1.3 Весы среднего (III) класса точности по ГОСТ Р 53228-2008, максимальная нагрузка не более 500 г, дискретность отсчета 0,001 г.
- 4.1.4 Государственный стандартный образец состава водных растворов ионов аммония ГСО 7259-96 (далее ГСО).
- 4.1.5 Электроды измерительные: ионселективный пленочный электрод ЭЛИС-121NH $_4$ по ТУ 4215-015-35918409-2002 (вариант 1); аммониевый комбинированный электрод PY-I02 (газочувствительный) фирмы «Sartorius» (вариант 2) или аналогичные электроды других марок.
- 4.1.6 Электрод вспомогательный хлорсеребряный электрод ЭВЛ-1МЗ по ТУ 25.05.2181-77 с минимальной скоростью истечения раствора хлорида калия через ключ (не более 0,5 см³ в сутки) или другого типа с аналогичными характеристиками с двойным электролитическим ключом или внешним электролитическим мостиком.
- 4.1.7 Электрод стеклянный комбинированный ЭСК-10601 или ЭСК-10602, по ТУ 4215-004-35918409-2008 (для измерения рН).
- 4.1.8 Термометр любого типа по ГОСТ 29224-91 с диапазоном от $0\,^{\circ}$ С до $50\,^{\circ}$ С и точностью отсчета не более $0.5\,^{\circ}$ С.
- 4.1.9 Колбы мерные 2-го класса точности, исполнения 2, 2а по ГОСТ 1770-74 вместимостью: $100 \text{ см}^3 8 \text{ шт.}$, $200 \text{ см}^3 2 \text{ шт.}$, $250 \text{ см}^3 5 \text{ шт.}$
- 4.1.10 Дозатор пипеточный одноканальный ДПОФц-1-200 с объемом дозирования 200 мм 3 (0,2 см 3) по ТУ 9452-002-33189998-2002 1 шт.
- 4.1.11 Пипетки градуированные 2-го класса точности, исполнения 1, 2 по ГОСТ 29227-91 вместимостью: 1 см 3 1 шт., 2 см 3 1 шт., 5 см 3 2 шт., 10 см 3 2 шт.
- 4.1.12 Пипетки с одной отметкой 2-го класса точности, исполнения 2 по ГОСТ 29169-91 вместимостью: $5 \text{ см}^3 2 \text{ шт.}$, $10 \text{ см}^3 2 \text{ шт.}$, $25 \text{ см}^3 3 \text{ шт.}$

РД 52.24.394-2012

- 4.1.13 Цилиндры мерные исполнения 1, 3 по ГОСТ 1770-74 вместимостью: $25~\text{см}^3-2~\text{шт.},~50~\text{см}^3-1~\text{шт.},~100~\text{см}^3-3~\text{шт.},~250~\text{см}^3-1~\text{шт.},~1000~\text{см}^3-1~\text{шт.}$
 - 4.1.14 Мензурка по ГОСТ 1770-74 вместимостью 1000 см³.
- 4.1.15 Стаканы B-1, ТХС, по ГОСТ 25336-82 вместимостью: 50 см³ 24 шт., $100 \text{ см}^3 2 \text{ шт.}$, $250 \text{ см}^3 1 \text{ шт.}$, $400 \text{ см}^3 3 \text{ шт.}$, $1000 \text{ см}^3 2 \text{ шт.}$
- 4.1.16 Воронки лабораторные, тип В, по ГОСТ 25336-82 диаметром: 36 мм 3 шт., 56 мм-1 шт.
- 4.1.17 Стаканчики для взвешивания (бюксы) CB-19/9, CB-24/10, CB-34/12 по ГОСТ 25336-82 4 шт.
- 4.1.18 Эксикатор исполнения 2, диаметром корпуса 190 мм по ГОСТ 25336-82.
- 4.1.19 Бюретка 2-го класса точности, тип 1, исполнение 1, вместимостью 50 см³ по ГОСТ 29251-91 с прокладкой из стеклоткани или стекловаты или колонка стеклянная с краном и пористой пластиной высотой 50-60 см, диаметром 2-4 см (импортная или по заказу) 1 шт.
- 4.1.20 Установки для отгонки аммиака (колбы круглодонные термостойкие, тип K, исполнение 1 вместимостью 250 см 3 , переходы, тип 1, исполнение 1 с взаимозаменяемыми конусами керна 29/32 и муфты 14/23, каплеуловители с отводной трубкой KO-14/23--60 или KO-14/23-100, холодильники с прямой трубкой XПТ длиной 30 или 40 см, алонжи, тип АИ, и колбы плоскодонные, тип П, исполнения 1, 2 вместимостью 100 см 3) по ГОСТ 25336-82 (для выполнения измерений по варианту 1) 2 шт.
 - 4.1.21 Кипятильные камешки (кусочки пористого стекла или фаянса)
 - 4.1.22 Палочки стеклянные по ГОСТ 27460-87 2 шт.
 - 4.1.23 Промывалка.
- 4.1.24 Магнитная мешалка ПЭ-6100 по ТУ 4321-009-23050963-98 с перемешивающими элементами длиной около 20 мм.
- 4.1.25 Склянки для хранения растворов из светлого и темного стекла вместимостью 100 см³, 250 см³, 500 см³, 1000 см³ с притертыми или завинчивающимися пробками с плотными полиэтиленовыми вкладышами.
- 4.1.26 Посуда полиэтиленовая (полипропиленовая) для хранения проб и растворов с завинчивающимися крышками вместимостью 100 см³, 250 см³, 500 см³.
 - 4.1.27 Шпатель пластмассовый.
- 4.1.28 Плитки электрические с регулируемой мощностью нагрева по ГОСТ 14919-83 или колбонагреватели для колб вместимостью 250 см³ (для выполнения измерений по варианту 1) 2 шт.
 - 4.1.29 Шкаф сушильный общелабораторного назначения.
 - 4.1.30 Холодильник бытовой.

Примечание — Допускается использование других типов средств измерений, посуды и оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в 4.1.

4.2 Реактивы и материалы

- 4.2.1 Аммоний хлористый (хлорид аммония) по ГОСТ 3773-72, х.ч.
- 4.2.2 Трис-(оксиметил)-аминометан (далее ТРИС) по ТУ 6-09-4292-76, х.ч. (для измерений по варианту 1).
- 4.2.3 Натрий фосфорнокислый двузамещенный 12-водный (гидрофосфат натрия) по ГОСТ 4172-76, х.ч. (для измерений по варианту 1).
- 4.2.4 Натрий фосфорнокислый однозамещенный 2-водный (дигидрофосфат натрия) по ГОСТ 245-76, ч.д.а. (для измерений по варианту 1).
- 4.2.5 Катионит сильнокислый КУ-2-8 по ГОСТ 20298-74 или другой, равноценный по характеристикам, в H^+ -форме.
- 4.2.6 Натрий гидроокись (гидроксид натрия) по ГОСТ 4328-77, х.ч. или ч.д.а.
 - 4.2.7 Натрий хлористый (хлорид натрия) по ГОСТ 4233-77, ч.д.а.
- 4.2.8 Натрий азотнокислый (нитрат натрия) по ГОСТ 4168-79, х.ч. (для измерений по варианту 1).
- 4.2.9 Калий хлористый (хлорид калия) по ГОСТ 4234-77, х.ч. (для измерений по варианту 1).
 - 4.2.10 Кислота соляная по ГОСТ 3118-77, х.ч.
- 4.2.11 Кислота серная особой чистоты по ГОСТ 14262-78 (для измерений по варианту 1).
- 4.2.12 Малахитовый зеленый по ТУ 6-09-1551-77, ч.д.а. (для измерений по варианту 2).
- 4.2.13 Кальций хлористый обезвоженный (гранулы) по ТУ 6-09-4711-81, ч.
 - 4.2.14 Вода дистиллированная по ГОСТ 6709-72.
- 4.2.15 Фильтры бумажные обеззоленные «белая лента» по ТУ 6-09-1678-86.
- 4.2.16 Универсальная индикаторная бумага (рН 1-10) по ТУ 6-09-1181-76.

Примечание — Допускается использование реактивов, изготовленных по другой нормативной и технической документации, в том числе импортных, с квалификацией не ниже указанной в 4.2.

5 Метод измерений

Выполнение измерений потенциометрическим методом по варианту 1 с ионселективным пленочным электродом, реагирующим на ионы аммония (например, ЭЛИС-121NH₄ или аналогичный другой марки), основано на изменении потенциала электрода в зависимости от активности ионов аммония в растворе. Измерения проводят при рН 7,1±0,1 в присутствии индифферентного электролита, являющегося

РД 52.24.394-2012

одновременно буферным раствором, поддерживающего в анализируемом растворе определенное значение рН и ионной силы.

Выполнение измерений потенциометрическим методом по варианту 2 с аммониевым комбинированным электродом, реагирующим на молекулы аммиака (например, PY-I02 фирмы «Sartorius» или аналогичный другой марки), основано на изменении потенциала в зависимости от концентрации аммиака, образующегося при подщелачивании раствора, содержащего ионы аммония, до значений pH > 11.

Массовую концентрацию аммонийного азота в пробе находят, исходя из градуировочной зависимости величины электродного потенциала от значения отрицательного логарифма активности (концентрации) ионов аммония (pNH₄).

6 Требования безопасности, охраны окружающей среды

- 6.1 При выполнении измерений массовой концентрации аммонийного азота в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в национальных стандартах и соответствующих нормативных документах.
- 6.2 По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2-му, 3-му классам опасности по ГОСТ 12.1.007.
- 6.3 Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных ПДК в соответствии с ГОСТ 12.1.005.
- 6.4 В помещении, где выполняют измерения массовой концентрации аммонийного азота, не следует проводить работы, связанные с применением аммиака и щелочных растворов солей аммония.
- 6.5 Особых требований по экологической безопасности не предъявляется.

7 Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускают лиц со средним профессиональным образованием или без профессионального образования, но имеющие стаж работы в лаборатории не менее года и освоившие методику.

8 Требования к условиям измерений

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

- температура окружающего воздуха (20±5) °C;
- атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);
- влажность воздуха не более 80 % при 25 °C;
- напряжение в сети (220±10) В;

- частота переменного тока в сети питания (50±1) Гц.

9 Отбор и хранение проб

Отбор проб для определения аммонийного азота производится в соответствии с ГОСТ 17.1.5.05 и ГОСТ Р 51592. Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04 и ГОСТ Р 51592. Пробы помещают в стеклянную или полипропиленовую (полиэтиленовую) посуду с плотно закрывающейся пробкой.

Анализ проводят в день отбора пробы. Для длительного хранения необходимо замораживание пробы.

При высоком содержании в анализируемой воде взвешенных веществ пробу фильтруют через бумажный фильтр «белая лента», промытый безаммиачной водой. При фильтровании первые порции фильтрата следует отбросить.

10 Подготовка к выполнению измерений

10.1 Приготовление растворов и реактивов

10.1.1 Раствор ТРИС, 1 моль/дм³

Взвешивают 12,11 г ТРИС в стакане вместимостью 100 см³ и растворяют его в 60 см³ безаммиачной воды. Приливают 7,5 см³ концентрированной соляной кислоты, переносят раствор в мерную колбу вместимостью 100 см³, доводят безаммиачной водой до метки на колбе и перемешивают. Если раствор не прозрачный, его фильтруют через бумажный фильтр «белая лента». рН приготовленного раствора должен составлять 7,1±0,1.

Хранят в склянке из темного стекла не более 5 дней при комнатной температуре или в течение месяца в холодильнике.

10.1.2 Фосфатный буферный раствор, рН 7,6±0,1

Помещают 160 г гидрофосфата натрия и 6 г дигидрофосфата натрия в стакан вместимостью 1000 см³ и растворяют их в 800 см³ безаммиаччной воды (если медленно растворяются, подогревают). Проверяют рН раствора, при необходимости корректируют его, добавляя гидрофосфат или дигидрофосфат натрия так, чтобы рН раствора был 7,6±0,1, а затем кипятят раствор в течение 30 мин. После охлаждения буферный раствор количественно переносят в мензурку и разбавляют безаммиачной водой до 1000 см³. Хранят в холодильнике не более 2-х месяцев.

Замена натриевых солей на калиевые не допускается.

10.1.3 Насыщенный раствор хлорида калия

В стакан вместимостью 250 см³ наливают 140 см³ дистиллированной воды и растворяют в ней 60 г хлорида калия при температуре от 50 °С до 60 °С. После охлаждения используют раствор над осадком для заполнения вспомогательного электрода.

10.1.4 Раствор нитрата натрия, 0,1 моль/дм³

Взвешивают 1,7 г нитрата натрия, высушенного при температуре 105 °C в течение 2 ч, и растворяют его в 200 см³ дистиллированной воды. Хранят в течение месяца. Используют для заполнения электролитического ключа.

10.1.5 Подготовка колонки с катионитом в H⁺-форме

Подготовку колонки с катионитом проводят в соответствии с приложением Б.

10.1.6 Безаммиачная вода

Дистиллированную воду пропускают через колонку с катионитом в H^+ -форме, со скоростью 1-2 капли в секунду. Первые $100-150~{\rm cm}^3$ воды, прошедшей через колонку, отбрасывают. Хранят безаммиачную воду в плотно закрытой стеклянной посуде не более недели.

10.1.7 Раствор гидроксида натрия, 1 моль/дм³

Растворяют 40 г гидроксида натрия в 1000 см³ дистиллированной воды. Раствор хранят в плотно закрытой полиэтиленовой посуде. Срок хранения не ограничен.

10.1.8 Раствор гидроксида натрия, 6 моль/дм³

Растворяют 60 г гидроксида натрия в 250 см³ дистиллированной воды. Раствор хранят в плотно закрытой полиэтиленовой посуде. Срок хранения не ограничен.

10.1.9 Раствор гидроксида натрия, 10 моль/дм³

Растворяют 40 г гидроксида натрия в 90 см³ дистиллированной воды. Раствор хранят в плотно закрытой полиэтиленовой посуде. Срок хранения не ограничен.

10.1.10 Раствор малахитового зеленого, 1 %-ный

Растворяют 0,5 г малахитового зеленого в 50 см³ безаммиачной воды. Раствор хранят в стеклянной посуде в темном месте не более 3 мес.

10.1.11 Раствор серной кислоты, 0,1 моль/дм³

Приливают 1,4 см³ концентрированной серной кислоты к 250 см³ безаммиачной воды и перемешивают. Хранят в герметично закрытой склянке не более месяца.

10.1.12 Раствор соляной кислоты, 1 моль/дм³

Приливают 84 см³ концентрированной соляной кислоты к 916 см³ дистиллированной воды и перемешивают. Раствор устойчив.

10.2 Подготовка установки для отгонки аммиака

Перед началом работы установку для отгонки аммиака (см. 4.1.20) (круглодонную перегонную колбу, каплеуловитель, холодильник и алонж, удлиненный стеклянной, полипропиленовой или тефлоновой трубкой) промывают дистиллированной, а затем безаммиачной водой. В перегонную колбу наливают 100 см³ безаммиачной воды, добавляют 20 см³ буферного раствора и кипятильные камешки, предварительно тщательно промытые и высушенные в течение 1 – 1,5 ч при 110 °С. Нагревают перегонную колбу на электроплитке или в колбонагревателе и отгоняют в колбу-приемник примерно 90 см³ дистиллята для промывания (пропаривания) установки. После промывания установка готова к выполнению холостого опыта.

При сборке установки все шлифы должны тщательно смачиваться безаммиачной водой и плотно прилегать друг к другу.

В течение рабочего дня после каждой отгонки установку промывают безаммиачной водой.

10.3 Приготовление градуировочных образцов

- 10.3.1 Градуировочные образцы готовят из аттестованного раствора AP2-NH $_4$ с молярной концентрацией ионов аммония 1,00·10 $^{\text{-}2}$ моль/дм 3 . Методика приготовления аттестованных растворов приведена в приложении A.
- 10.3.2 Для приготовления градуировочного образца № 1 с молярной концентрацией ионов аммония $1,00\cdot10^{-3}$ моль/дм³ (14,0 мг/дм³ аммонийного азота) пипеткой с одной отметкой отбирают 25,0 см³ аттестованного раствора AP2-NH₄ с молярной концентрацией ионов аммония $1,00\cdot10^{-2}$

- моль/дм³, помещают его в мерную колбу вместимостью 250 см³, доводят безаммиачной водой до метки и перемешивают. Полученному образцу приписывают величину рNH₄ равную 3,00.
- 10.3.3 Для приготовления градуировочного образца № 2 с молярной концентрацией ионов аммония 5,00·10⁻⁴ моль/дм³ (7,00 мг/дм³ аммонийного азота) пипеткой с одной отметкой отбирают 10,0 см³ аттестованного раствора AP2-NH₄ с молярной концентрацией ионов аммония 1,00·10⁻² моль/дм³, помещают его в мерную колбу вместимостью 200 см³, доводят безаммиачной водой до метки и перемешивают. Полученному образцу приписывают величину рNH₄ равную 3,30.
- 10.3.4 Для приготовления градуировочного образца № 3 с молярной концентрацией ионов аммония $2,00\cdot10^{-4}$ моль/дм³ (2,80 мг/дм³ аммонийного азота) отбирают пипеткой с одной отметкой 5,0 см³ аттестованного раствора AP2-NH₄ с молярной концентрацией ионов аммония $1,00\cdot10^{-2}$ моль/дм³, помещают его в мерную колбу вместимостью 250 см³, доводят безаммиачной водой до метки и перемешивают. Полученному образцу приписывают величину pNH₄ равную 3,70.
- 10.3.5 Для приготовления градуировочного образца № 4 с молярной концентрацией ионов аммония $1,00\cdot10^{-4}$ моль/дм³ (1,40 мг/дм³ аммонийного азота) пипеткой с одной отметкой отбирают 25,0 см³ градуировочного образца № 1 с молярной концентрацией ионов аммония $1,00\cdot10^{-3}$ моль/дм³, помещают его в мерную колбу вместимостью 250 см³, доводят безаммиачной водой до метки и перемешивают. Полученному образцу приписывают величину pNH_4 равную 4,00.
- 10.3.6 Для приготовления градуировочного образца № 5 с молярной концентрацией ионов аммония 4,00·10⁻⁵ моль/дм³ (0,56 мг/дм³ аммонийного азота) градуированной пипеткой вместимостью 5 см³ отбирают 4,0 см³ градуировочного образца № 1 с молярной концентрацией ионов аммония 1,00·10⁻³ моль/дм³, помещают его в мерную колбу вместимостью 100 см³, доводят безаммиачной водой до метки и перемешивают. Полученному образцу приписывают величину рNH₄ равную 4,40.
- 10.3.7 Для приготовления градуировочного образца № 6 с молярной концентрацией ионов аммония $1,00\cdot10^{-5}$ моль/дм³ (0,14 мг/дм³ аммонийного азота) пипеткой с одной отметкой отбирают 10,0 см³ градуировочного образца № 4 с молярной концентрацией ионов аммония $1,00\cdot10^{-4}$ моль/дм³, помещают его в мерную колбу вместимостью 100 см³, доводят безаммиачной водой до метки и перемешивают. Полученному образцу приписывают величину pNH_4 равную 5,00.
- 10.3.8 Для приготовления градуировочного образца № 7 с молярной концентрацией ионов аммония 6,00·10⁻⁶ моль/дм³ (0,084 мг/дм³ аммонийного азота) градуированной пипеткой вместимостью 10 см³ отбирают 6,0 см³ градуировочного образца № 4 с молярной концентрацией ионов аммония 1,00·10⁻⁴ моль/дм³, помещают его в мерную колбу вместимо-

стью 100 см³, доводят безаммиачной водой до метки и перемешивают. Полученному образцу приписывают величину рNH₄ равную 5,22.

- 10.3.9 Для приготовления градуировочного образца № 8 с молярной концентрацией ионов аммония 4,50·10⁻⁶ моль/дм³ (0,063 мг/дм³ аммонийного азота) градуированной пипеткой вместимостью 5 см³отбирают 4,5 см³ градуировочного образца № 4 с молярной концентрацией ионов аммония 1,00·10⁻⁴ моль/дм³, помещают его в мерную колбу вместимостью 100 см³, доводят безаммиачной водой до метки и перемешивают. Полученному образцу приписывают величину рNH₄ равную 5,35.
- 10.3.10 Для приготовления градуировочного образца № 9 с молярной концентрацией ионов аммония $3,00\cdot10^{-6}$ моль/дм³ (0,042 мг/дм³ аммонийного азота) градуированной пипеткой вместимостью 5 см³ отбирают 3,0 см³ градуировочного образца № 4 с молярной концентрацией ионов аммония $1,00\cdot10^{-4}$ моль/дм³, помещают его в мерную колбу вместимостью 100 см³, доводят безаммиачной водой до метки и перемешивают. Полученному образцу приписывают величину рNH₄ равную 5,52.

Градуировочные образцы № 7-9 используют только при выполнении измерений по варианту 2.

Градуировочные образцы хранят в плотно закрытой склянке из темного стекла. Градуировочный образец № 1 хранят не более 1 мес., образцы № 2-4 не более 5 сут. Градуировочные образцы № 5- 9 готовят непосредственно перед использованием.

10.4 Подготовка иономера, измерительного и вспомогательного электродов к работе

- 10.4.1 Подготовку иономера, измерительного и вспомогательного электродов к работе осуществляют в соответствии с руководством по их эксплуатации или паспортом.
- 10.4.2 При работе с электродом ЭЛИС-121NH₄ для предотвращения попадания насыщенного раствора хлорида калия из электрода сравнения в градуировочные образцы и пробы на электрод надевают электролитический ключ или используют мостик, заполненный раствором нитрата натрия, который ежедневно обновляют перед началом работы.
- 10.4.3 При работе с аммониевым комбинированным электродом кабель электрода периодически подтягивают для обновления слоя электролита возле мембраны с целью получения более воспроизводимых результатов.

10.5 Установление градуировочной зависимости по варианту 1

10.5.1 В чистые сухие стаканы вместимостью 50 см³ с помощью цилиндра вместимостью 50 см³ помещают по 30 см³ каждого из градуиро-

вочных образцов № 1- 6 и приливают к ним по 1,5 см³ раствора ТРИС. Стаканы поочередно устанавливают на магнитную мешалку, погружают в градуировочный образец перемешивающий элемент, измерительный электрод и вспомогательный электрод с двойным ключом или мостик и проводят измерение потенциала от меньшей концентрации ионов аммония (1,00 ·10⁻⁵ моль/дм³) к большей (1,00·10⁻³ моль/дм³). Глубина погружения электродов и скорость перемешивания должны быть одинаковыми при всех измерениях. Показания иономера записывают после установления постоянного значения потенциала. Время его установления зависит от концентрации ионов аммония в градуировочных образцах и составляет, как правило, от нескольких секунд до 3-4 мин.

Для каждого градуировочного образца проводят по два параллельных измерения потенциала. Градуировочную зависимость рассчитывают методом наименьших квадратов в координатах: значения рNH₄ градуировочных образцов (pNH₄ = $-lg[NH_4]$) — соответствующие им значения потенциала в милливольтах. После измерения потенциала измеряют и записывают температуру градуировочных образцов. Разница в температуре для разных градуировочных образцов не должна составлять более 1 °C.

Градуировочную зависимость устанавливают ежедневно перед определением аммонийного азота в пробах воды, а также при замене иономера, измерительного или вспомогательного электродов.

10.5.2 Если руководством по эксплуатации иономера предусмотрен иной способ установления градуировочной зависимости (градуировки), то допускается устанавливать её в соответствии с руководством по эксплуатации данного иономера. В том случае, когда градуировочную зависимость для конкретного прибора устанавливают по меньшему числу градуировочных образцов, чем предусмотрено 10.5.1, после ее установления следует выполнить контроль стабильности градуировочной характеристики в соответствии с 10.7.

10.6 Установление градуировочной зависимости по варианту 2

В чистые сухие стаканы вместимостью 50 см³ с помощью цилиндра вместимостью 25 см³ помещают по 25 см³ каждого из градуировочных образцов № 1-9. Стаканы поочередно устанавливают на магнитную мешалку, погружают в градуировочный образец перемешивающий элемент, измерительный электрод и включают магнитную мешалку. Во время перемешивания вносят дозатором 0,2 см³ гидроксида натрия, 10 моль/дм³. Показания иономера записывают после установления постоянного значения потенциала. Время его установления зависит от концентрации ионов аммония в градуировочных образцах и составляет, как правило, от нескольких секунд до 3 мин. Измерения проводят от меньшей концентрации ионов аммония к большей. Глубина погружения электрода и скорость перемешивания должны быть одинаковыми во всех измерени-

ях. После измерения потенциала измеряют и записывают температуру градуировочных образцов. Разница в температуре для разных градуировочных образцов не должна составлять более 1 °C.

Для каждого градуировочного образца проводят по два параллельных измерения потенциала. Градуировочную зависимость устанавливают для двух диапазонов: pNH_4 от 5,52 до 5,00 и pNH_4 от 5,00 до 3,00. Если в пробах воды, анализируемых в лаборатории, массовая концентрация аммонийного азота не превышает 7,0 мг/дм³, то допускается установление градуировочной зависимости по образцам N 2-9.

Рассчитывают градуировочную зависимость методом наименьших квадратов в координатах: значения pNH_4 градуировочных образцов $(pNH_4 = -lg[NH_4])$ — соответствующие им значения потенциала в милливольтах.

Градуировочную зависимость устанавливают ежедневно перед определением аммонийного азота в пробах воды, а также при замене иономера, измерительного электрода, мембранного модуля.

Не рекомендуется применять другой способ установления градуировочной зависимости для измерений по варианту 2.

10.7 Контроль стабильности градуировочной характеристики

Средствами контроля являются градуировочные образцы № 1-6 (не менее 2-х образцов) по 10.3, используемые для установления градуировочной зависимости. Градуировочные образцы для контроля стабильности градуировочной характеристики следует выбирать так, чтобы концентрация аммонийного азота в них находилась в том же диапазоне, что и концентрации аммонийного азота в пробах воды, анализируемых в конкретной лаборатории. Градуировочная характеристика считается стабильной при выполнении условия

$$\left| X_{\Gamma} - C_{\Gamma} \right| \le \sigma_{R}, \tag{2}$$

где X_{Γ} — результат контрольного измерения массовой концентрации аммонийного азота в градуировочном образце, мг/дм³;

 C_{Γ} — приписанное значение массовой концентрации аммонийного азота в градуировочном образце, мг/дм³;

 σ_R – показатель воспроизводимости для концентрации C_Γ , мг/дм³ (см. таблицу 1).

Массовую концентрацию аммонийного азота в градуировочном образце рассчитывают, подставляя в формулу (5) значение pNH₄, найденное по градуировочной зависимости.

Если условие стабильности не выполняется для одного градуировочного образца, необходимо выполнить повторное измерение этого

РД 52.24.394-2012

образца для исключения результата, содержащего грубую погрешность. При повторном невыполнении условия, выясняют причины нестабильности, устраняют их и повторяют измерения. Если градуировочная характеристика вновь не будет удовлетворять условию (2), устанавливают новую градировочную зависимость, либо проводят измерения иономером, работающим в режиме милливольтметра, и устанавливают градуировочную зависимость согласно 10.5.

11 Порядок выполнения измерений

11.1 Выполнение измерений по варианту 1

11.1.1 Помещают 100 см³ анализируемой пробы воды в перегонную колбу, добавляют 20 см³ фосфатного буферного раствора и кипятильные камешки. Соединяют элементы установки (см. 4.1.20) и отгоняют пробу в плоскодонную колбу (колбу-приемник) вместимостью 100 см³, содержащую 5 см³ раствора серной кислоты, 0,1 моль/дм³, до объема примерно 90 см³ (на колбе должна быть сделана соответствующая метка).

При отгонке выходной отросток алонжа (или холодильника при использовании вертикальной установки с каплеуловителем КО-14/23-100) должен быть погружен в раствор серной кислоты. При необходимости его можно удлинить с помощью стеклянной трубки, пристыкованной к алонжу или холодильнику коротким отрезком резиновой трубки, или с помощью полипропиленовой (тефлоновой) трубки. По мере увеличения объема отгона колбу-приемник следует опускать так, чтобы отросток алонжа был погружен в жидкость на 1 – 1,5 см.

11.1.2 После отгонки пробу из колбы-приемника переносят в мерную колбу вместимостью 100 см³, промывают трубку холодильника и колбуприемник небольшим количеством безаммиачной воды и присоединяют промывную воду к пробе. Приливают к пробе 1 см³ раствора гидроксида натрия, 6 моль/дм³, затем добавляют этот же раствор по каплям до рН 6-7, контролируя величину рН по индикаторной бумаге. Раствор в мерной колбе доводят до метки безаммиачной водой и перемешивают.

Далее отбирают по 30 см³ отгона в два чистых сухих стакана вместимостью 50 см³ и приливают по 1,5 см³ раствора ТРИС. Стаканы по очереди устанавливают на магнитную мешалку, погружают в анализируемую пробу перемешивающий элемент, измерительный электрод и вспомогательный электрод с двойным ключом или мостик. Включают мешалку и, после установления постоянного значения потенциала, записывают результат. Результаты измерений в двух аликвотах отгона усредняют, если разница между ними не превышает 6 % по отношению к среднему значению. В противном случае выполняют измерения третьей аликвоты и в качестве результата используют среднее арифметическое двух наиболее близких значений.

По окончании измерения электрод отмывают безаммиачной водой сначала с помощью промывалки, затем несколькими погружениями в стакан с безаммиачной водой. Остатки воды с поверхности электрода осторожно удаляют фильтровальной бумагой (не касаясь мембраны!).

При измерении потенциала температура анализируемой пробы не должна отличаться от температуры градуировочных образцов при установлении градуировочной зависимости более чем на 2 °C.

11.2 Выполнение измерений по варианту 2

В чистый сухой стакан вместимостью 50 см³ вносят 25 см³ анализируемой пробы. Стакан устанавливают на магнитную мешалку, погружают в анализируемую пробу перемешивающий элемент и измерительный электрод. Включают мешалку, добавляют к пробе 0,2 см³ раствора гидроксида натрия, 10 моль/дм³, и после установления постоянного значения потенциала, записывают результат (заранее гидроксид натрия в пробу не добавлять!). Проводят два параллельных измерения потенциала в анализируемой пробе воды.

Перед началом и во время работы необходимо периодически аккуратно подтягивать кабель электрода для обновления слоя внутреннего электролита возле мембраны. Недопустимо присутствие пузырьков воздуха на мембране. По окончании измерения электрод отмывают безаммиачной водой сначала с помощью промывалки, затем несколькими погружениями в стакан с безаммиачной водой. Остатки воды с поверхности электрода осторожно удаляют фильтровальной бумагой (не касаясь мембраны!).

Температура пробы должна быть близка к температуре градуировочных образцов, допустимая разность составляет не более 1 °C.

пробах высокоминерализованных или кислых вод следует контролировать величину рН пробы после добавлении 0,2 см³ гидроксида 10 моль/ $дм^3$. Контроль МОЖНО осуществлять с помощью поставляемого в комплекте с электродом раствора гидроксида натрия, содержащего индикатор, который изменяет (обесцвечивается) при рН≤11. Для проверки в отдельный стакан помещают 25 см³ анализируемой пробы воды, прибавляют 0,2 см³ указанного раствора, имеющего темно-синюю окраску, и перемешивают. Если проба обесцвечивается, добавляют по каплям тот же раствор гидроксида натрия до возвращения темно-синей окраски. Если такой раствор отсутствует, можно контролировать рН пробы, используя 1 %-ный раствор малахитового зеленого. Для этого в стакан помещают 25 см³ анализируемой пробы воды, две капли раствора малахитового зеленого и 0,2 см³ гидроксида натрия, 10 моль/дм³. Если проба в течение 0,5 мин не обесцвечивается, то по каплям добавляют тот же раствор гидроксида натрия до начала

обесцвечивания. Такое же число капель раствора гидроксида натрия добавляют дополнительно к 0,2 см³ при проведении измерений.

11.3 Мешающие влияния и их устранения

11.3.1 Выполнению измерений массовой концентрации аммонийного азота с ионселективным пленочный электродом, реагирующим на ионы аммония (типа ЭЛИС-121NH₄), мешают К⁺, а также высокие концентрации натрия, кальция, магния и органических веществ, в том числе природного происхождения. Последние способны сорбироваться на поверхности мембраны электрода, отравляя ее и понижая чувствительность электрода.

Наибольшее мешающее влияние оказывают ионы калия. При низких концентрациях аммонийного азота результаты могут быть недостоверными уже в том случае, когда концентрация ионов калия в 2-3 раза превышает концентрацию ионов аммония. В природных водах калий присутствует всегда и концентрация его, как правило, намного превышает концентрацию ионов аммония. По этой причине прямое определение аммонийного азота в воде с ионселективными пленочными электродами, реагирующими на ионы аммония, невозможно. Мешающее влияние калия и других компонентов матрицы пробы воды устраняется предварительной отгонкой аммиака из слабощелочной среды.

11.3.2 При определении аммонийного азота в природных водах с использованием газочувствительного ионселективного электрода, реагирующего на молекулы аммиака (типа PY-I02 «Sartorius»), мешающие влияния практически отсутствуют. Гидрофобная мембрана электрода проницаема для аммиака, но не проницаема для К⁺, Na⁺, Ca²⁺, Mg²⁺ и других компонентов природных вод. В загрязненных природных и очищенных сточных водах мешающее влияние могут оказывать летучие амины, которые гидролизуются в щелочной среде с образованием аммиака. Для уменьшения этого влияния измерение следует проводить сразу после добавления гидроксида натрия.

12 Вычисление результатов измерений

12.1 Значения рNH₄ анализируемых проб воды находят по градуировочной зависимости. Молярную концентрацию ионов аммония находят по следующим соотношениям

$$pNH_4 = -lg [NH_4], \tag{3}$$

$$[NH_4] = 10^{-pNH_4}, (4)$$

где [NH₄] – молярная концентрация ионов аммония, моль/дм³.

Массовую концентрацию аммонийного азота X, мг/дм³, рассчитывают по формуле

$$X = 10^{-pNH_4} \cdot 14,0 \cdot 10^3 \text{ мг/дм}^3$$
 (5)

или находят по таблице В.1 (приложение В).

При использовании для выполнения измерений иономера, имеющего программу обработки данных, значение массовой концентрации аммонийного азота считывают непосредственно с дисплея.

12.2 Результат измерения по варианту 1 в документах, предусматривающих его использование, представляют в виде

$$X \pm \Delta$$
, MΓ/ Δ M³, (6)

где $\pm \Delta$ – границы характеристики погрешности результатов измерений для данной массовой концентрации аммонийного азота (см. таблицу 1).

12.3 Результат измерения по варианту 2 в документах, предусматривающих его использование, представляют в виде

$$\overline{X} \pm \Delta$$
, MГ/ДМ³, (7)

где \overline{X} – среднее арифметическое значение двух результатов, разность между которыми не превышает предела повторяемости r_n (2,77· σ_r); при превышении предела повторяемости следует поступать в соответствии с 13.2;

±Δ – границы характеристики погрешности результатов измерений для данной массовой концентрации аммонийного азота (см. таблицу 1).

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности, которые не должны содержать более двух значащих цифр.

12.4 Допустимо представлять результат в виде

$$X \pm \Delta_n$$
 или $\overline{X} \pm \Delta_n$, P=0,95, при условии $\Delta_n < \Delta$, (8)

где $\pm \Delta_{\scriptscriptstyle Л}$ – границы характеристики погрешности результатов измерений, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений.

12.5 Результаты измерений оформляют протоколом или записью в журнале, по формам, приведенным в Руководстве по качеству лаборатории.

13 Контроль качества результатов измерений при реализации методики в лаборатории

13.1 Общие положения

- 13.1.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:
- оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости, погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).
- 13.1.2 Периодичность оперативного контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполняемых измерений регламентируются в Руководстве по качеству лаборатории.

13.2 Алгоритм оперативного контроля повторяемости

- 13.2.1 Контроль повторяемости осуществляют для каждого из результатов измерений, полученных в соответствии с методикой по варианту 2, и периодически (одна контрольная проба на каждые 10-12 рабочих проб) при выполнении измерений по варианту 1. Для проведения контроля отобранную пробу воды делят на две части и выполняют измерения в соответствии с разделом 11.
- 13.2.2 Результат контрольной процедуры r_{κ} , мг/дм³ рассчитывают по формуле

$$\mathbf{r}_{\kappa} = \left| \mathbf{X}_{1} - \mathbf{X}_{2} \right|, \tag{9}$$

где X_1 , X_2 — результаты единичных измерений массовой концентрации аммонийного азота в пробе, мг/дм³.

13.2.3 Предел повторяемости r_n , мг/дм³ рассчитывают по формуле

$$r_n = 2.77 \cdot \sigma_r \tag{10}$$

где σ_r – показатель повторяемости, мг/дм 3 (см. таблицу 1).

13.2.4 Результат контрольной процедуры должен удовлетворять условию

$$r_{\kappa} \le r_{n} \,. \tag{11}$$

13.2.5 При несоблюдении условия (11) выполняют еще два измерения и сравнивают разницу между максимальным и минимальным результатами с нормативом контроля равным 3,6·ог. В случае

повторного превышения предела повторяемости, поступают в соответствии с разделом 5 ГОСТ Р ИСО 5725-6.

13.3 Алгоритм оперативного контроля процедуры выполнения измерений с использованием метода добавок совместно с методом разбавления проб

- 13.3.1 Оперативный контроль процедуры выполнения измерений с использованием метода добавок совместно с методом разбавления пробы проводят, если массовая концентрация аммонийного азота в рабочей пробе при выполнении измерений по варианту 2 превышает минимально определяемую концентрацию более, чем в 3 раза, и при выполнении измерений по варианту 1 более, чем в 2 раза. В противном случае оперативный контроль проводят методом добавок согласно 13.4. Для введения добавок используют ГСО, либо аттестованный раствор аммонийного азота (приложение A).
- 13.3.2 Оперативный контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры K_{K_1} с нормативом контроля K_1 .
- 13.3.3 Результат контрольной процедуры $\mathsf{K}_{\mathsf{K}_1}$, мг/дм³, рассчитывают по формулам

при выполнении измерений по варианту 1

$$K_{K_1} = X'' + (\eta - 1) \cdot X' - X - C,$$
 (12)

при выполнении измерений по варианту 2

$$K_{K_1} = \overline{X}'' + (\eta - 1) \cdot \overline{X}' - \overline{X} - C, \qquad (13)$$

- где X"- результат контрольного измерения массовой концентрации аммонийного азота в пробе, разбавленной в η раз, с известной добавкой, мг/дм³;
- X'- результат контрольного измерения массовой концентрации аммонийного азота в пробе, разбавленной в η раз, мг/дм³;
- \overline{X}'' среднее арифметическое результатов контрольных измерений массовой концентрации аммонийного азота в пробе, разбавленной в раз, с известной добавкой, мг/дм³;
- \overline{X}' среднее арифметическое результатов массовой концентрации аммонийного азота в пробе, разбавленной в η раз, мг/дм³;
 - С концентрация добавки, мг/дм³.
 - 13.3.4 Норматив контроля K_1 , мг/дм³, рассчитывают по формуле

$$K_1 = \sqrt{\Delta_{n_{X''}}^2 + (\eta - 1)^2 \Delta_{n_{X'}}^2 + \Delta_{n_X}^2},$$
 (14)

РД 52.24.394-2012

где $\Delta_{\Lambda_{X''}}$, $\Delta_{\Lambda_{X'}}$ и Δ_{Λ_X} — значения характеристик погрешности результатов измерений, установленные при реализации методики в лаборатории, соответствующие массовой концентрации аммонийного азота в разбавленной пробе, разбавленной пробе с добавкой, рабочей пробе, мг/дм 3 .

Примечание — Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражений: $\Delta_{\Pi_{X''}} = 0.84 \cdot \Delta_{X''}$, $\Delta_{\Pi_{X''}} = 0.84 \cdot \Delta_{X''}$, и $\Delta_{\Pi_{X''}} = 0.84 \cdot \Delta_{X''}$ с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

13.3.5 Если результат контрольной процедуры удовлетворяет условию:

$$\mid \mathsf{K}_{\mathsf{K}_{1}} \mid \leq \mathsf{K}_{1}, \tag{15}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (15) контрольную процедуру повторяют. При повторном невыполнении условия (15), выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.4 Алгоритм оперативного контроля процедуры выполнения измерений с использованием метода добавок

- 13.4.1 Контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры K_{κ_2} с нормативом контроля K_2 .
- 13.4.2 Результат контрольной процедуры $\mathsf{K}_{\mathsf{K}_2}$, мг/дм³, рассчитывают по формулам

при выполнении измерений по варианту 1

$$K_{K_2} = X''' - X - C \tag{16}$$

при выполнении измерений по варианту 2

$$K_{K_2} = \overline{X}''' - \overline{X} - C \tag{17}$$

где X''' – результат контрольного измерения массовой концентрации аммонийного азота в пробе с известной добавкой, мг/дм³;

 \overline{X}''' — среднее арифметическое результатов контрольных измерений массовой концентрации аммонийного азота в пробе с известной добавкой, мг/дм 3 .

13.4.3 Норматив контроля погрешности K_2 , мг/дм³, рассчитывают по формуле

$$\mathsf{K}_2 = \sqrt{\Delta_{\mathsf{\Pi}_{\mathsf{X}'''}}^2 + \Delta_{\mathsf{\Pi}_{\mathsf{X}}}^2} \,, \tag{18}$$

где $\Delta_{n_{\chi'''}}$ — значение характеристики погрешности результатов измерений, установленное при реализации методики в лаборатории и соответствующее массовой концентрации аммонийного азота в пробе с известной добавкой, мг/дм³.

Примечание — Допустимо для расчета норматива контроля использовать значения характеристик погрешности, полученные расчетным путем по формулам $\Delta_{\Pi_{X'''}}$ =0,84 $\Delta_{X'''}$ и $\Delta_{\Pi_{X}}$ =0,84 Δ_{X} с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

13.4.4 Если результат контрольной процедуры удовлетворяет условию

$$\mid \mathsf{K}_{\mathsf{K}_{2}} \mid \leq \mathsf{K}_{2}, \tag{19}$$

процедуру признают удовлетворительной.

При невыполнении условия (19) контрольную процедуру повторяют. При повторном невыполнении условия (19), выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

14 Проверка приемлемости результатов, полученных в условиях воспроизводимости

14.1 Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение. Значение предела воспроизводимости R, мг/дм³, рассчитывают по формуле

$$R = 2,77\sigma_R.$$
 (20)

где σ_R – показатель воспроизводимости методики, мг/дм³ (см. таблицу 1).

- 14.2 При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно разделу 5 ГОСТ Р ИСО 5725-6 или МИ 2881.
- 14.3 Проверка приемлемости проводится при необходимости сравнения результатов измерений, полученных двумя лабораториями.

Приложение А

(обязательное)

Методика приготовления аттестованных растворов аммонийного азота AP1-NH₄ и AP2-NH₄

А.1 Назначение и область применения

Настоящая методика регламентирует процедуру приготовления аттестованных растворов аммонийного азота, предназначенных для установления градуировочных характеристик приборов и контроля точности результатов измерений массовой концентрации аммонийного азота в природных и очищенных сточных водах потенциометрическим методом.

А.2 Метрологические характеристики

Метрологические характеристики аттестованных растворов приведены в таблице А.1.

Таблица А.1 – Метрологические характеристики аттестованных растворов

Наименование характеристики	Значение характеристики для аттестованного раствора		
	AP1-NH₄	AP2- NH ₄	
Аттестованное значение молярной концентрации ионов аммония, моль/дм ³	1,00·10 ⁻¹	1,00.10-2	
Границы погрешности аттестованного значения моль/дм ³ лярной концентрации ионов аммония (P=0,95), моль/дм ³	±5,2·10 ⁻⁴	±5,8·10 ⁻⁵	
Аттестованное значение массовой концентрации аммонийного азота, мг/дм ³	1400	140,0	
Границы погрешности аттестованного значения мас- совой концентрации аммонийного азота (P=0,95), мг/дм ³	±7,2	±0,81	

А.3 Средства измерений, вспомогательные устройства

- А.3.1 Весы высокого (II) класса точности по ГОСТ Р 53228-2008, максимальная нагрузка не более 200 г., дискретность отсчета не более 0,0002 г.
- А.3.2 Колбы мерные 2-го класса точности исполнения 2, 2а по ГОСТ 1770-74 вместимостью $250~{\rm cm}^3-2~{\rm m}$ т.
- А.3.3 Пипетка с одной отметкой 2-го класса точности, исполнения 2 по ГОСТ 29169-91 вместимостью 25 см 3 .
 - А.3.4 Стаканчик для взвешивания (бюкс) СВ-24/10 по ГОСТ 25336-82.
 - А.3.5 Воронка лабораторная, тип В, диаметр 56 мм по ГОСТ 25336-82.
 - А.3.6 Промывалка.
 - А.3.7 Шкаф сушильный общелабораторного назначения.

А.4 Исходные компоненты аттестованных растворов

А.4.1 Аммоний хлористый (хлорид аммония) по ГОСТ 3773-72, х.ч. Основное вещество NH_4CI , массовая доля которого не менее 99,5 %, молекулярная масса — 53,45.

А.4.2 Вода дистиллированная по ГОСТ 6709-72.

А.5 Процедура приготовления аттестованных растворов

А.5.1 Приготовление аттестованного раствора аммонийного азота AP1-NH₄

На лабораторных весах высокого класса точности взвешивают в бюксе с точностью до четвертого знака после запятой 1,337 г хлорида аммония, предварительно высушенного при температуре 105 °С до постоянной массы. Навеску количественно переносят в мерную колбу вместимостью 250 см³, растворяют в дистиллированной воде, доводят раствор до метки на колбе.

Полученному раствору приписывают молярную концентрацию ионов аммония $1,00\cdot10^{-1}$ моль/дм³, массовую концентрацию аммонийного азота -1,40 г/дм³.

А.5.2 Приготовление аттестованного раствора аммонийного азота AP2-NH $_4$

Для приготовления аттестованного раствора AP2-NH₄ с молярной концентрацией ионов аммония $1,00\cdot10^{-2}$ моль/дм³ отбирают 25,0 см³ аттестованного раствора AP1-NH₄ с молярной концентрацией $1,00\cdot10^{-1}$ моль/дм³ пипеткой с одной отметкой, переносят его в мерную колбу вместимостью 250 см³, растворяют в дистиллированной воде, доводят раствор до метки на колбе.

Полученному раствору приписывают молярную концентрацию ионов аммония $1,00 \cdot 10^{-2}$ моль/дм³, массовую концентрацию аммонийного азота -0,14 г/дм³.

А.6 Расчет метрологических характеристик аттестованных растворов

A.6.1 Расчет метрологических характеристик аттестованного раствора AP1-NH₄

Аттестованное значение молярной концентрации ионов аммония M_1 , моль/дм 3 , и массовой концентрации аммонийного азота C_1 , мг/дм 3 , рассчитывают по формулам

$$M_1 = \frac{m \cdot 1000}{V \cdot 53.45} , \qquad (A.1)$$

$$C_1 = \frac{m \cdot 14,01 \cdot 1000 \cdot 1000}{V \cdot 53.45}, \tag{A.2}$$

где т – масса навески хлорида аммония, г;

V – вместимость мерной колбы, см³;

14,01 и 53,45 — масса моля аммонийного азота и хлорида аммония, соответственно, г/моль.

Расчет предела возможных значений погрешности установления молярной концентрации ионов аммония Δ_{1M} , моль/дм³, и массовой концентрации аммонийного азота Δ_1 , мг/дм³, в растворе AP1-NH₄ проводится по формулам

$$\Delta_{1M} = M_1 \cdot \sqrt{\left(\frac{\Delta_{\mu}}{\mu}\right)^2 + \left(\frac{\Delta_{m}}{m}\right)^2 + \left(\frac{\Delta_{V}}{V}\right)^2}, \qquad (A.3)$$

$$\Delta_1 = C_1 \cdot \sqrt{\left(\frac{\Delta_{\mu}}{\mu}\right)^2 + \left(\frac{\Delta_{m}}{m}\right)^2 + \left(\frac{\Delta_{V}}{V}\right)^2}, \qquad (A.4)$$

где Δ_{μ} – предельное значение возможного отклонения массовой доли основного вещества в реактиве от приписанного значения μ , %:

 µ – массовая доля основного вещества в реактиве, приписанная реактиву квалификации х.ч., %;

 Δ_{m} – предельная возможная погрешность взвешивания, г;

 $\Delta_{
m V}$ – предельное значение возможного отклонения объема мерной колбы от номинального значения, см 3 .

Погрешности установления молярной концентрации ионов аммония и массовой концентрации аммонийного азота в растворе AP1-NH₄ равны

$$\Delta_{\text{1M}} = 0,1 \cdot \sqrt{\left(\frac{0,5}{100}\right)^2 + \left(\frac{0,0004}{1,337}\right)^2 + \left(\frac{0,3}{250}\right)^2} = 0,00052$$
 моль/дм³,

$$\Delta_1 = 1400 \cdot \sqrt{\left(\frac{0.5}{100}\right)^2 + \left(\frac{0.0004}{1.337}\right)^2 + \left(\frac{0.3}{250}\right)^2} = 7.2 \text{ мг/дм}^3.$$

A.6.2 Расчет метрологических характеристик аттестованного раствора AP2-NH $_4$

Аттестованное значение молярной концентрации ионов аммония M_2 , моль/дм 3 , и массовой концентрации аммонийного азота C_2 , мг/дм 3 , рассчитывают по формулам

$$M_2 = \frac{M_1 \cdot V_1}{V}, \tag{A.5}$$

$$C_2 = \frac{C_1 \cdot V_1}{V}, \qquad (A.6)$$

где V_1 – объем раствора, отбираемый пипеткой, см³.

Расчет предела возможных значений погрешности установления молярной концентрации ионов аммония Δ_{2M} , моль/дм³, и массовой концентрации аммонийного азота Δ_2 , мг/дм³, в растворе AP2-NH₄ проводится по формулам:

$$\Delta_{2M} = M_2 \cdot \sqrt{\left(\frac{\Delta_{1M}}{M_1}\right)^2 + \left(\frac{\Delta_{V1}}{V_1}\right)^2 + \left(\frac{\Delta_V}{V}\right)^2}, \qquad (A.7)$$

$$\Delta_2 = C_2 \cdot \sqrt{\left(\frac{\Delta_1}{C_1}\right)^2 + \left(\frac{\Delta_{V1}}{V_1}\right)^2 + \left(\frac{\Delta_V}{V}\right)^2}, \qquad (A.8)$$

где Δ_{V1} - предельное значение возможного отклонения объема пипетки от номинального значения, см 3 .

Погрешности установления молярной концентрации ионов аммония и массовой концентрации аммонийного азота в растворе AP2-NH₄ равны

$$\Delta_{2M} = 0.01 \cdot \sqrt{\left(\frac{0.00052}{0.1}\right)^2 + \left(\frac{0.06}{25}\right)^2 + \left(\frac{0.30}{250}\right)^2} = 0.000058 \text{ моль/дм}^3,$$

$$\Delta_2 = 140.0 \cdot \sqrt{\left(\frac{7.2}{1400}\right)^2 + \left(\frac{0.06}{25}\right)^2 + \left(\frac{0.30}{250}\right)^2} = 0.81 \text{ мг/дм}^3.$$

А.7 Требования безопасности

Необходимо соблюдать общие требования техники безопасности при работе в химических лабораториях.

А.8 Требования к квалификации исполнителей

Аттестованные растворы может готовить инженер или лаборант со средним профессиональным образованием, прошедший специальную подготовку и имеющий стаж работы в химической лаборатории не менее 6 месяцев.

А.9 Требования к маркировке

На склянки с аттестованными растворами должны быть наклеены этикетки с указанием условного обозначения аттестованного раствора, величины молярной концентрации ионов аммония и массовой концентрации аммонийного азота в растворе, погрешности их установления и даты приготовления.

А.10 Условия хранения

- A.10.1 Аттестованный раствор AP1-NH₄ хранят в плотно закрытой склянке в холодильнике не более 6 мес.
- А.10.2 Аттестованный раствор AP2-NH₄ хранят в плотно закрытой склянке в холодильнике не более 3 мес.

Приложение Б

(обязательное)

Подготовка и регенерация колонки с катионитом

От 50 до 60 г сухого катионита замачивают на 1-2 дня в насыщенном растворе хлорида натрия в дистиллированной воде (70 г хлорида натрия растворяют в 200 см³ воды). Через 1-2 дня сливают раствор хлорида, промывают катионит 2-3 раза дистиллированной водой и переносят его в колонку вместе с водой так, чтобы не образовалось воздушных пузырьков. Предварительно в колонку приливают немного дистиллированной воды. Избыток воды при заполнении колонки периодически сливают через кран. После заполнения пропускают через колонку с катионитом последовательно по 100 см³ раствора соляной кислоты, 1 моль/дм³, дистиллированной воды и раствора гидроксида натрия, 1 моль/дм³, со скоростью 1-2 капли в секунду, повторяя процедуру от 8 до 10 раз. Заканчивают обработку смолы пропусканием 100 см³ раствора соляной кислоты. Промывают колонку дистиллированной водой до рН 6 по универсальной индикаторной бумаге, пропуская воду с максимально возможной скоростью. Колонка с катионитом пригодна к работе длительное время. В перерыве между использованием Катионит герметично закрытой. должен колонку хранят находиться под слоем воды.

При ухудшении качества безаммиачной воды колонку регенерируют, пропуская 100 см³ раствора соляной кислоты, 1 моль/дм³, и промывая дистиллированной водой.

Катионит (как сухой, так и влажный) со временем стареет и теряет ионообменные свойства. Для проверки пригодности катионита готовят раствор хлорида натрия с молярной концентрацией 0,010 моль/дм³, для чего взвешивают на лабораторных весах высокого класса точности 0,0585 г хлорида натрия. Навеску количественно переносят в мерную колбу вместимостью 100 см³, растворяют в дистиллированной воде, доводят раствор до метки на колбе.

Через после первоначальной подготовки или колонку после регенерации пропускают 100 см³ дистиллированной воды со скоростью 1-2 капли в секунду. Первые 50 – 60 см³ воды, прошедшей через колонку, отбрасывают, следующую порцию объемом 40 см³ собирают в стакан вместимостью 50 см³ и измеряют pH катионированной воды. После этого пропускают с той же скоростью приготовленный раствор хлорида натрия, первые 50 см³ раствора, прошедшие через колонку, отбрасывают, а следующую порцию собирают в стакан и также измеряют рН. За счет замещения ионов натрия в растворе на ионы водорода при пропускании через катионит, рН раствора понижается по сравнению с катионированной дистиллированной водой. Если качество катионита удовлетворительное, разница в величине рН должна составлять от 2,5 до 3,0.

Приложение В

(рекомендуемое)

Перевод значений рNH₄ в массовую концентрацию аммонийного азота

Таблица В.1 - Пересчет значений pNH4 в массовую концентрацию аммонийного азота

pNH ₄	Х, мг/дм ³	pNH ₄	Х, мг/дм³	pNH ₄	Х, мг/дм ³	pNH ₄	Х, мг/дм ³
3,00	14,0	3,36	6,11	3,72	2,67	4,08	1,16
3,01	13,7	3,37	5,97	3,73	2,61	4,09	1,14
3,02	13,4	3,38	5,84	3,74	2,55	4,10	1,11
3,03	13,1	3,39	5,70	3,75	2,49	4,11	1,09
3,04	12,8	3,40	5,57	3,76	2,43	4,12	1,06
3,05	12,5	3,41	5,45	3,77	2,38	4,13	1,04
3,06	12,2	3,42	5,32	3,78	2,32	4,14	1,01
3,07	11,9	3,43	5,20	3,79	2,27	4,15	0,991
3,08	11,6	3,44	5,08	3,80	2,22	4,16	0,968
3,09	11,4	3,45	4,97	3,81	2,17	4,17	0,946
3,10	11,1	3,46	4,85	3,82	2,12	4,18	0,925
3,11	10,9	3,47	4,74	3,83	2,07	4,19	0,904
3,12	10,6	3,48	4,64	3,84	2,02	4,20	0,883
3,13	10,4	3,49	4,53	3,85	1,98	4,21	0,863
3,14	10,1	3,50	4,43	3,86	1,93	4,22	0,843
3,15	9,91	3,51	4,33	3,87	1,89	4,23	0,824
3,16	9,68	3,52	4,23	3,88	1,84	4,24	0,806
3,17	9,46	3,53	4,13	3,89	1,80	4,25	0,787
3,18	9,25	3,54	4,04	3,90	1,76	4,26	0,769
3,19	9,04	3,55	3,95	3,91	1,72	4,27	0,752
3,20	8,83	3,56	3,86	3,92	1,68	4,28	0,734
3,21	8,63	3,57	3,77	3,93	1,64	4,29	0,718
3,22	8,44	3,58	3,68	3,94	1,61	4,30	0,702
3,23	8,24	3,59	3,60	3,95	1,57	4,31	0,686
3,24	8,06	3,60	3,52	3,96	1,54	4,32	0,670
3,25	7,87	3,61	3,44	3,97	1,50	4,33	0,655
3,26	7,69	3,62	3,36	3,98	1,46	4,34	0,640
3,27	7,52	3,63	3,28	3,99	1,43	4,35	0,625
3,28	7,35	3,64	3,21	4,00	1,40	4,36	0,611
3,29	7,18	3,65	3,13	4,01	1,37	4,37	0,597
3,30	7,02	3,66	3,06	4,02	1,34	4,38	0,584

Окончание таблицы В.1

pNH ₄	Х, мг/дм ³	pNH ₄	Х, мг/дм ³	pNH ₄	X, мг/дм³	pNH ₄	Х, мг/дм ³
3,31	6,86	3,67	2,99	4,03	1,31	4,39	0,570
3,32	6,70	3,68	2,92	4,04	1,28	4,40	0,557
3,33	6,55	3,69	2,86	4,05	1,25	4,41	0,545
3,34	6,40	3,70	2,79	4,06	1,22	4,42	0,532
3,35	6,25	3,71	2,73	4,07	1,19	4,43	0,520
4,44	0,508	4,70	0,279	4,96	0,154	5,22	0,084
4,45	0,497	4,71	0,273	4,97	0,150	5,23	0,082
4,46	0,485	4,72	0,267	4,98	0,146	5,24	0,081
4,47	0,474	4,73	0,261	4,99	0,143	5,25	0,079
4,48	0,464	4,74	0,255	5,00	0,140	5,26	0,077
4,49	0,453	4,75	0,249	5,01	0,137	5,27	0,075
4,50	0,443	4,76	0,243	5,02	0,134	5,28	0,074
4,51	0,433	4,77	0,238	5,03	0,131	5,29	0,072
4,52	0,423	4,78	0,232	5,04	0,128	5,30	0,070
4,53	0,413	4,79	0,227	5,05	0,125	5,31	0,069
4,54	0,404	4,80	0,222	5,06	0,122	5,32	0,067
4,55	0,394	4,81	0,217	5,07	0,119	5,33	0,066
4,56	0,386	4,82	0,212	5,08	0,116	5,34	0,064
4,57	0,377	4,83	0,207	5,09	0,114	5,35	0,062
4,58	0,368	4,84	0,202	5,10	0,111	5,36	0,061
4,59	0,360	4,85	0,198	5,11	0,109	5,37	0,060
4,60	0,352	4,86	0,193	5,12	0,106	5,38	0,058
4,61	0,344	4,87	0,189	5,13	0,104	5,39	0,057
4,62	0,336	4,88	0,184	5,14	0,101	5,40	0,056
4,63	0,328	4,89	0,180	5,15	0,099	5,41	0,054
4,64	0,321	4,90	0,176	5,16	0,097	5,42	0,053
4,65	0,313	4,91	0,172	5,17	0,095	5,43	0,052
4,66	0,306	4,92	0,168	5,18	0,092	5,44	0,051
4,67	0,299	4,93	0,164	5,19	0,090	5,45	0,050
4,68	0,292	4,94	0,161	5,20	0,088	5,46	0,048
4,69	0,286	4,95	0,157	5,21	0,086		

Лист регистрации изменений

		Номер	страницы				Да	та
Номер изме- нения	изме- ненной	заменен- ной	новой	аннулиро- ванной	Номер документа (ОРН)	Подпись	внесения изменения	введения изменения

МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГИДРОХИМИЧЕСКИЙ ИНСТИТУТ»

344090, г. Ростов-на-Дону пр. Стачки, 198

Факс: (863) 222-44-70 Телефон (863) 297-51-63 E-mail: ghi@aaanet.ru

СВИДЕТЕЛЬСТВО

об аттестации методики измерений № 394.01.00175-2010

Методика измерений массовой концентрации аммонийного азота в водах потенциометрическим методом с ионселективными электродами,

разработанная федеральным государственным бюджетным учреждением «Гидрохимический институт» (ФГБУ «ГХИ»), пр-т Стачки, д. 198, г. Ростов-на-Дону. 344090

и регламентированная РД 52.24.394-2012 Массовая концентрация аммонийного азота в водах. Методика измерений потенциометрическим методом с ионселективными электродами (34 с.),

аттестована в соответствии с ГОСТ Р 8.563-2009.

Аттестация осуществлена по результатам экспериментальных исследований.

В результате аттестации установлено, что методика выполнения измерений соответствует предъявляемым к ней метрологическим требованиям и обладает метрологическими характеристиками, приведенными в таблицах 1 и 2.

Таблица 1 – Диапазон измерений, значения характеристик погрешности измерений и ее составляющих при принятой вероятности P=0.95

Диапазон из-	Показатель по-	Показатель вос-	Показатель	Показатель	
мерений мас-	вторяемости	производимости	правильности	точности	
совых кон-	(средне-	(среднеквадрати-	(границы сис-	(границы	
центраций	квадратическое	ческое отклоне-	тематической	погрешно-	
аммонийного	отклонение по-	ние воспроизво-	погрешности)	сти)	
азота,	вторяемости)	димости)	_	_	
X, мг/дм ³	σ _r , мг/дм ³	σ _R , мг/дм ³	±∆ _с , мг/дм ³	±∆, мг/дм ³	
Вариант 1					
От 0,30 до					
14,0 включ.	0,02+0,025·X	0,02+0,082·X	0,14·X	0,02+ 0,26·X	
Вариант 2					

Диапазон из-	Показатель по-	Показатель вос-	Показатель	Показатель
мерений мас-	вторяемости	производимости	правильности	точности
совых кон-	(средне-	(среднеквадрати-	(границы сис-	(границы
центраций	квадратическое	ческое отклоне-	тематической	погрешно-
аммонийного	отклонение по-	ние воспроизво-	погрешности)	сти)
азота,	вторяемости)	димости)		_
X, мг/дм ³	σ _r , мг/дм ³	σ _R , мг/дм ³	±∆ _с , мг/дм ³	±∆, мг/дм ³
От 0,050 до				
14,0 включ.	0,007+0,0071·X	0,002+0,070·X	0,001+0,033·X	0,005+0,14·X

Таблица 2 - Диапазон измерений, значения пределов повторяемости и воспроизводимости при принятой вероятности Р=0,95

Диапазон измерений	Предел повторяемости	Предел воспроизводимости			
массовых концентраций	(для двух результатов	(для двух результатов			
аммонийного азота,	параллельных определений)	измерений)			
X, мг/дм ³	r , мг/дм ³	R, мг/дм ³			
Вариант 1					
От 0,30 до 14,0 включ.	0,06+0,069·X	0,06+0,23·X			
Вариант 2					
От 0,050 до 14,0	0,019+0,020·X	0,006+0,19·X			
включ.					

При реализации методики в лаборатории обеспечивают:

- оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости, погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности повторяемости, внутрилабораторной прецизионности, погрешности).

Алгоритм оперативного контроля исполнителем процедуры выполнения измерений приведен в РД 52.24.394-2012.

Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируют в Руководстве по качеству лаборатории.

Дата выдачи 20.12.2010.

Директор А.М. Никаноров

Главный метролог А.А. Назарова