МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

РУКОВОДЯЩИЙ ДОКУМЕНТ

РД 52.18.583 — 2011

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВОЙ ДОЛИ СУРЬМЫ В ПРОБАХ ПОЧВ И ДОННЫХ ОТЛОЖЕНИЙ МЕТОДОМ АТОМНО-АБСОРБЦИОННОЙ СПЕКТРОМЕТРИИ С ЭЛЕКТРОТЕРМИЧЕСКОЙ АТОМИЗАЦИЕЙ

г. Обнинск ФГБУ «ВНИИГМИ-МЦД» 2012

Предисловие

- 1 РАЗРАБОТАН Федеральным государственным бюджетным учреждением «Научно-производственное объединение «Тайфун» (ФГБУ «НПО «Тайфун»)
- 2 РАЗРАБОТЧИКИ Т.Н. Моршина, Т.Б. Мамченко, Е.П. Вирченко, Л.П. Копылова, Е.Л. Баранова, А.Г. Растригина, А.Ф. Ковалев, В.А. Красковская
 - 3 СОГЛАСОВАН с УМЗА Росгидромета 06.06.2011 г.
- 4 УТВЕРЖДЕН заместителем Руководителя Росгидромета 07.06.2011 г.
 - 5 СВЕДЕНИЯ О МЕТОДИКЕ (МЕТОДЕ) ИЗМЕРЕНИЙ
- 5.1 ATTECTOBAHA Федеральным государственным бюджетным учреждением «Научно-производственное объединение «Тайфун», аттестат аккредитации № 01.00305–2011 от 15.02.2011 г.
- 5.2 Свидетельство об аттестации методики (метода) измерений № 18.24–2010 от 20.10.2010 г.
- 6 ЗАРЕГИСТРИРОВАН ФГБУ «НПО «Тайфун» за номером РД 52.18.583-2011 от 17.06.2011 г.
- 7 ВВЕДЕН взамен РД 52.18.583–96 «Методические указания. Определение массовой доли сурьмы в пробах почв и донных отложений методом атомно-абсорбционной спектрофотометрии с беспламенной атомизацией. Методика выполнения измерений»

Содержание

1 Область применения 1
2 Нормативные ссылки1
3 Термины и определения2
4 Требования к показателям точности измерений
5 Требования к средствам измерений, вспомогательным устройствам,
материалам, реактивам4
6 Метод измерений 6
7 Требования безопасности, охраны окружающей среды 6
8 Требования к квалификации операторов7
9 Требования к условиям измерений 8
10 Подготовка к выполнению измерений
11 Порядок выполнения измерений14
12 Проверка приемлемости результатов параллельных измерений 16
13 Вычисление результатов измерений17
14 Оформление результатов измерений17
15 Внутренний контроль качества результатов измерений
Приложение А (рекомендуемое) Форма рабочего журнала регистрации
результатов измерений массовой доли сурьмы21
Приложение Б (рекомендуемое) Форма рабочего журнала регистрации
результатов контроля погрешности с использованием
образцов для контроля22
Приложение В (рекомендуемое) Форма рабочего журнала регистрации
результатов контроля погрешности с использованием
метода добавок23
Библиография24
Свидетельство об аттестации методики (метода) измерений № 18.24–2010
на 2 с.

РУКОВОДЯЩИЙ ДОКУМЕНТ

Методика измерений массовой доли сурьмы в пробах почв и донных отложений методом атомно-абсорбционной спектрометрии с электротермической атомизацией

Дата введения – 2012–01–01

1 Область применения

- 1.1 Настоящий руководящий документ устанавливает методику измерений (далее методика) массовой доли сурьмы в пробах почвы и донных отложений (далее пробы) методом атомно-абсорбционной спектрометрии с электротермической атомизацией.
- 1.2 Диапазон измерений массовой доли сурьмы в пробах составляет от до 1 до 25 мг/кг.

П р и м е ч а н и е – Верхний предел измерения массовой доли сурьмы может быть увеличен путем разбавления пробы.

1.3 Настоящий руководящий документ предназначен для использования в лабораториях, выполняющих измерения в области мониторинга загрязнения окружающей среды.

2 Нормативные ссылки

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.004–91 ССБТ. Пожарная безопасность. Общие требования ГОСТ 12.1.007–76 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.019–79 ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ 12.4.009–83 ССБТ. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание

ГОСТ 12.4.021–75 ССБТ. Системы вентиляционные. Общие требования

ГОСТ 17.1.5.01–80 Охрана природы. Гидросфера. Общие требования к отбору проб донных отложений водных объектов для анализа на загрязненность

ГОСТ 17.4.3.01–83 Охрана природы. Почвы. Общие требования к отбору проб

ГОСТ 17.4.3.03–85 Охрана природы. Почвы. Общие требования к методам определения загрязняющих веществ

ГОСТ 17.4.4.02–84 Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа

ГОСТ Р ИСО 5725–(1-6)–2002 Точность (правильность и прецизионность) методов и результатов измерений

РМГ 61–2003 ГСИ. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы МИ 2335–2003 Рекомендация. оценки Государственная система обеспечения единства измерений. Внутренний контроль качества результатов количественного химического анализа

П р и м е ч а н и е – Ссылки на остальные нормативные и технические документы приведены в разделе 5.

3 Термины и определения

В настоящем руководящем документе применены следующие термины с соответствующими определениями:

3.1 промежуточный градуировочный раствор: Раствор с известной массовой концентрацией сурьмы, который используется для приготовления рабочих градуировочных растворов.

- 3.2 рабочий градуировочный раствор: Раствор с известной массовой концентрацией сурьмы, который используется для построения градуировочной характеристики.
- 3.3 проба: Часть почвы или донных отложений, отобранная для анализа и отражающая их химический состав.
- 3.4 холостая проба: Проба, проходящая все стадии анализа, что и реальная проба, но не содержащая определяемый элемент.

4 Требования к показателям точности измерений

- 4.1 Метрологические требования при выполнении измерений массовой доли мышьяка в пробах почв и донных отложений установлены в ГОСТ 17.4.3.03.
- 4.2 Показатели точности и ее составляющих установлены в соответствии с ГОСТ Р ИСО 5725–(1-6) и РМГ 61.

Методика обеспечивает получение результатов измерений с погрешностью, значение которой не превышает значений показателей, приведенных в таблице 1.

Таблица 1

Наименова-	Диапазон	Показатель	Показатель *	Показатель	Показатель
ние опреде-	измерений,	повторяемо-	воспроизво-	правильности	точности
ляемого	мг/кг	сти (среднее	димости	(границы, в	(границы, в
компонента		квадратичес-	(среднее	которых на-	которых
		кое отклоне-	квадратиче-	ходится неис-	находится
		ние резуль-	ское отклоне-	ключенная	погреш-
		татов еди-	ние всех ре-	систематиче-	ность мето-
		ничного оп-	зультатов из-	ская состав-	дики
		ределения,	мерений, по-	ляющая по-	при Р=0,95)
		полученных	лученных по	грешности)	±δ, %
		по методике	методике в	$\pm\delta_{c}$, %	
		в условиях	условиях вос-		
		повторяе-	производи-		
		мости)	мости)		
		$\sigma_{r,}$ %	$\sigma_{R,}$ %		
Сурьма	От 1,0 до 25 включ.	8	11	16	29

^{*} Показатель воспроизводимости получен по результатам экспериментальных исследований в пяти лабораториях.

РД 52.18. 583 - 2011

Диапазон измерений, значения предела повторяемости и предела воспроизводимости приведены в таблице 2.

Таблица 2

Наименование	Диапазон	Предел повторяемости	Предел
определяемо-	измерений,	для двух результатов	воспроизводимости
го компонента	мг/кг	параллельных	для двух результатов
		определений	измерений
		r _n , %	R, %
Сурьма	От 1,0 до	22	30,5
	25 включ.		

5 Требования к средствам измерений, вспомогательным устройствам, материалам, реактивам

- 5.1 При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы:
- атомно-абсорбционный спектрометр электротермической С атомизацией Зеемановским корректором фона И (далее спектрофотометр) типа Перкин Элмер Z 3030, относительное СКО случайной составляющей погрешности при измерении массовой концентрации составляет не более 8%;
 - спектральная лампа с полым катодом типа ЛТ-6М;
 - графитовые трубки с коаксиальной графитовой платформой;
- программируемая секционная плитка ПСП-2 по ТУ 344320-003-71721453–2004;
 - аквадистиллятор ДЭ-4-2 по ТУ-16-10721–79;
 - аппарат для получения бидистиллированной воды типа БД-2;
 - аргон газообразный и жидкий. Технические условия по ГОСТ 10157–79;
- весы лабораторные по ГОСТ 53228–2008, среднего (III) класса точности с максимальной нагрузкой 200 г;
- государственный стандартный образец (ГСО) состава раствора ионов сурьмы (III) с массовой концентрацией 0,100 мг/см³, ГСО 7204–95;

- стаканчики тефлоновые объемом 50 см³;
- колбы мерные по ГОСТ 1770–74, исполнения 2, 2-го класса точности вместимостью 25 см 3 50 шт., 50 см 3 5 шт., 100 см 3 5 шт.;
- одноканальные пипетки переменного объема вместимостью от 0,2 до
 1,0 см³ с погрешностью дозирования не более 2 % фирмы Eppendorf 2 шт.;
- одноканальные пипетки переменного объема вместимостью от 1,0 до 5,0 см 3 с погрешностью дозирования не более 0,6 % фирмы LAB MATE $^+$ 1 шт.;
- полипропиленовые наконечники к пипеткам Eppendorf вместимостью от 0,2 до 1,0 см 3 ;
- полипропиленовые наконечники к пипеткам LAB MATE $^{+}$, вместимостью 5,0 см 3 ;
 - воронки по ГОСТ 19908–90 с наружным диаметром 45 мм 50 шт.;
- пробирки градуированные по ГОСТ 1770–74, исполнения 2, вместимостью $10 \text{ cm}^3 50 \text{ шт.}$;
- цилиндры мерные по ГОСТ 1770 74, исполнения 1, вместимостью 25 см 3 2 шт., 50 см 3 2 шт.;
- флаконы и банки цилиндрические полиэтиленовые с навинчивающимися крышками для Хранения проб и реактивов по ТУ 6-19-45–74, вместимостью 50 см³ 100 шт., 100 см³ 10 шт.;
 - фильтры обеззоленные «белая лента» по ТУ 2642-001-42624157-98;
 - ступки и пестики фарфоровые по ГОСТ 9147-80;
 - сито лабораторное с диаметром отверстий 1 мм СЛ-ЭБ-200.

П р и м е ч а н и е – Допускается использование других типов средств измерений, посуды и вспомогательного оборудования с характеристиками, обеспечивающими погрешность измерения, указанную в разделе 5.1.

- 5.2 При выполнении измерений применяют следующие реактивы:
- кислота фтористоводородная особой чистоты по МРТУ 6-09-4161-67;
- кислота азотная особой чистоты по ГОСТ 11125-84;
- кислота соляная особой чистоты по ГОСТ 14261-77;
- кислота хлорная по МРТУ 6-09-6604–70, х.ч.;

РД 52.18. 583 - 2011

- палладий металлический по ГОСТ 14836–82, порошок (99,94);
- магний нитрат 6-водный по ГОСТ 11088–75, ч. д. а.;
- вода дистиллированная по ГОСТ 6709–72;
- вода бидистиллированная;
- сода кальцинированная техническая по ГОСТ 5100–85.

П р и м е ч а н и е – Допускается использование других реактивов, в том числе импортных, с квалификацией не ниже указанной в 5.2.

6 Метод измерений

- 6.1 Измерение массовой доли сурьмы в пробах выполняют методом атомно-абсорбционной спектрометрии. Метод основан на селективном поглощении атомным паром сурьмы резонансного излучения, испускаемого спектральной лампой с полым катодом. Атомизация происходит непосредственно при введении порции анализируемого раствора в электротермический атомизатор графитовую печь.
 - 6.2 Методика предусматривает следующие этапы:
- перевод сурьмы в раствор путем разложения проб смесью азотной,
 хлорной и плавиковой кислот;
- измерение массовой концентрации сурьмы в растворе проб методом атомно-абсорбционной спектрометрии в электротермическом режиме;
 - расчет массовой доли сурьмы в пробах.

7 Требования безопасности, охраны окружающей среды

- 7.1 При проведении измерений следует соблюдать требования безопасности в соответствии с ГОСТ 12.1.007 и правилами [1].
- 7.2 Помещение, в котором проводятся измерения, должно быть оборудовано приточно-вытяжной вентиляцией согласно ГОСТ 12.4.021,

соответствовать требованиям пожарной безопасности согласно ГОСТ12.1.004 и иметь средства пожаротушения согласно ГОСТ 12.4.009.

- 7.3 Безопасность при работе с электроприборами должна обеспечиваться согласно ГОСТ 12.1.019.
- 7.4 При работе с кислотами руки должны быть защищены перчатками, глаза защитными очками.
- 7.5 Хлорную кислоту хранят в стеклянных бутылях со стеклянными пробками вдали от органических материалов. Разлитую кислоту необходимо сразу разбавить водой и вытереть шерстяной (не хлопчатобумажной) тряпкой. Фильтры, которые использовали для фильтрования растворов хлорной кислоты, необходимо тщательно промыть водой. Нельзя допускать контакт паров хлорной кислоты с органическими материалами, такими, как резиновые пробки, а также не следует нагревать с кислотой органические соединения, которые в ней не растворяются, поскольку накапливающиеся продукты разложения могут взрываться.
- 7.6 Плавиковую кислоту хранят в посуде из тефлона или полиэтилена, отмеривают кислоту пипетками с полипропиленовыми наконечниками.
- 7.7 Отработанные растворы кислот сливают в канализацию после нейтрализации содой. Для этого отработанные растворы кислот разбавляют в 2–3 раза водопроводной водой и добавляют небольшими порциями кальцинированную соду до нейтральной реакции среды (pH=7).

8 Требования к квалификации операторов

К выполнению измерений допускаются лица (инженер, техник или лаборант со средним специальным образованием), прошедшие соответствующую подготовку, имеющие навыки работы в химической лаборатории и опыт работы с атомно-абсорбционным спектрометром.

9 Требования к условиям измерений

РД 52.18. 583 - 2011

При выполнении измерений должны соблюдаться следующие условия:

- относительная влажность окружающего воздуха, %...... от 30 до 80;
- атмосферное давление, кПа (мм рт. ст.).....от 90 до 104 (от 700 до 790);
- частота питающей сети, Гц......50 ± 1;
- напряжение питающей сети переменного тока, В220 ± 20.

10 Подготовка к выполнению измерений

10.1 Подготовка посуды для отбора и хранения проб и растворов

- 10.1.1 Для отбора и хранения проб должна использоваться посуда из пластика или стекла.
- 10.1.2 Посуду для отбора и хранения проб и растворов следует готовить следующим образом:
 - тщательно промыть водопроводной водой с моющими средствами;
- замочить не менее чем на 1 ч в горячей, разбавленной (1:3)
 соляной кислоте;
 - тщательно промыть водопроводной водой;
 - 3 или 4 раза ополоснуть дистиллированной водой;
 - промыть разбавленной (1:3) азотной кислотой;
 - тщательно промыть бидистиллированной водой;
 - посуду просушить на воздухе.
- 10.1.3 Подготовленную согласно 10.1.2 посуду следует закрыть пробками и хранить в полиэтиленовых банках или пакетах.

10.2 Отбор, упаковка, консервация, транспортирование и хранение проб

- 10.2.1 Отбор, упаковку, транспортирование и хранение проб почвы следует проводить в соответствии с ГОСТ 17.4.3.01 и ГОСТ 17.4.4.02.
- 10.2.2 Отбор, консервацию и хранение проб донных отложений следует проводить в соответствии с ГОСТ 17.1.5.01.
- 10.2.3 Отобранные пробы следует высушить на воздухе или выморозить до воздушно-сухого состояния, тщательно перемешать, отобрать усредненную пробу массой 50 г, растереть ее в ступке и просеять через сито с размером ячейки 1 мм.

Примечание – Допускается использование проб полевой влажности.

10.3 Приготовление растворов и реактивов

- 10.3.1 Раствор азотной кислоты (1:3) готовят путем разбавления 330 см³ концентрированной азотной кислоты до 1000 см³ бидистиллированной водой.
- 10.3.2 Раствор азотной кислоты 0,1 N готовят путем разбавления 6,7 см³ концентрированной азотной кислоты до 1000 см³ бидистиллированной водой.
- 10.3.3 Раствор азотной кислоты 15 %-ный готовят путем разбавления 170 см³ концентрированной азотной кислоты до 1000 см³ бидистиллированной водой.
- 10.3.4 Раствор соляной кислоты (1:3) готовят путем разбавления 330 см³ концентрированной соляной кислоты до 1000 см³ бидистиллированной водой.
- 10.3.5 Для приготовления раствора нитрата палладия с массовой концентрацией палладия 10 г/дм³ в термостойкий стакан вместимостью 50 см³ помещают 1,00 г порошкообразного палладия, добавляют 5 см³ концентрированной азотной кислоты и нагревают на электроплитке до 50 см³, помещают 1,00 г порошкообразного палладия, добавляют 5 см³ концентрированной азотной кислоты и нагревают на электроплитке до полного растворения металла. После охлаждения раствор переносят в

РД 52.18. 583 - 2011

мерную колбу вместимостью 100 см³ и доводят до метки раствором азотной кислоты 15 %-ной. Хранят в полиэтиленовой посуде.

- 10.3.6 Для приготовления модификатора матрицы Pd+Mg в мерную колбу вместимостью 25 см³ помещают 0,086 г нитрата магния, приливают 7,5 см³ раствора нитрата палладия, растворяют при перемешивании и доводят до метки бидистиллированной водой.
- 10.3.7 Исходный градуировочный раствор сурьмы с массовой концентрацией 10 мг/дм³ (10000 мкг/дм³) готовят из ГСО состава раствора ионов сурьмы с массовой концентрацией 100 мг/дм³ путем разбавления его в десять раз раствором соляной кислоты (1:3). Для этого в мерную колбу вместимостью 50 см³ вносят примерно 10 см³ соляной кислоты (1:3), 5 см³ ГСО, доводят объем до метки соляной кислотой (1:3) и переносят в полиэтиленовую банку. Полученный раствор следует хранить не более 6 месяцев.
- 10.3.8 Исходный градуировочный раствор сурьмы с массовой концентрацией 1000 мкг/дм³ готовят из исходного градуировочного раствора с массовой концентрацией 10 мг/дм³ путем разбавления его в десять раз раствором соляной кислоты (1:3). Для этого в мерную колбу вместимостью 50 см³ вносят примерно 10 см³ соляной кислоты (1:3), 5 см³ исходного градуировочного раствора с массовой концентрацией 10 мг/дм³, доводят объем до метки соляной кислотой (1:3) и переносят в полиэтиленовую банку. Полученный раствор следует хранить не более 6 месяцев.
- 10.3.9 Для приготовление рабочих градуировочных растворов сурьмы с массовыми концентрациями 10,0; 20,0; 50,0; 70,0; 100,0 мкг/дм³ в мерные колбы вместимостью 100 см³ переносят соответствующие аликвоты исходного градуировочного раствора сурьмы (таблица 3) и доливают до метки в колбе раствором соляной кислоты (1:3). Рабочие градуировочные растворы следует хранить не более двух недель.

Таблица 3

Массовая концентрация исходного градуировочного раствора, мкг/дм ³	Объем аликвоты исходного градуировочного раствора, см ³	Массовая концентрация рабочего градуировочного раствора, мкг/дм ³
10000	1,0	100
10000	0,5	50
10000	0,7	70
10000	0,2	20
1000	1,0	10

10.4 Разложение проб

- 10.4.1 Навеску пробы массой $(0,30\pm0,05)$ г переносят в тефлоновый стаканчик вместимостью $50~{\rm cm}^3$, добавляют $1~{\rm cm}^3$ концентрированной хлорной кислоты, $1~{\rm cm}^3$ концентрированной азотной кислоты и $3~{\rm cm}^3$ концентрированной плавиковой кислоты.
- 10.4.2 Смесь закрывают крышкой и нагревают в течение 1 ч на электрической плитке при температуре (50±10) °С до образования пасты.
- 10.4.3 Добавляют еще 2 cm^3 концентрированной азотной кислоты, 3 cm^3 концентрированной плавиковой кислоты и выдерживают 1 ч при температуре (90 ± 10) °C.

Через 1 ч повышают температуру до (150±10) °С, выпаривают смесь до влажных солей, добавляют 1 см³ концентрированной азотной кислоты, 20 см³ бидистиллированной воды и кипятят до растворения осадка и уменьшения объема примерно в 2 раза.

- 10.4.4 Фильтры «белая лента» промывают последовательно раствором горячей соляной кислоты (1:3), бидистиллированной водой, раствором горячей азотной кислоты (1:3), бидистиллированной водой.
- 10.4.5 Раствор пробы переливают или отфильтровывают через предварительно промытый фильтр в мерную колбу вместимостью 25 см³. Промывают осадок на фильтре раствором азотной кислоты 0,1 N, доводят

РД 52.18. 583 - 2011

до метки в колбе бидистиллированной водой и переносят в пластиковый флакон.

10.5 Подготовка холостой пробы к анализу

- 10.5.1 Одновременно с пробами почв и донных отложений проводят подготовку к анализу холостой пробы. Для этого в тефлоновый стаканчик объемом 50 см³ добавляют 1 см³ концентрированной хлорной кислоты, 1 см³ концентрированной азотной кислоты и 3 см³ концентрированной плавиковой кислоты, закрывают крышкой и нагревают в течение 1 ч при температуре (50±10) °C.
- 10.5.2 Добавляют еще 2 см³ концентрированной азотной кислоты, 3 см³ концентрированной плавиковой кислоты и выдерживают 1 ч на электрической плитке при температуре (90±10) °C. Повышают температуру до (150±10) °C и выпаривают смесь до влажных солей.
- 10.5.3 Добавляют 1 см³ концентрированной азотной кислоты, 20 см³ бидистиллированной воды и кипятят до уменьшения объема примерно в два раза. Полученный раствор переливают или отфильтровывают через предварительно промытый фильтр в мерную колбу вместимостью 25 см³, доводят до метки бидистиллированной водой и переносят в пластиковый флакон.

10.6 Подготовка спектрометра к работе

Подготовка спектрометра к работе проводится в соответствии с инструкцией, прилагаемой к прибору. Измерения проводят при следующих условиях:

– длина волны, нм	217,6;
– оптическая щель, нм	0,7;
– время измерения на шаге атомизации, с	3.0.

Режим работы графитовой печи для пиролитически покрытой графитовой кюветы с платформой Львова приведен в таблице 4.

Таблица 4

Наименование температурной обработки	Номер шага	Темпе- ратура, °С	Время подъема температуры, с	Время выдержки темпера- туры, с	Расход внутреннего потока аргона, см ³ /мин
Высушивание	1 2	90 120	1 20	1 20	300 300
Озоление	3	1200	5	30	300
Атомизация	4	2300	0	4	0
Отжиг	5	2600	1	2	300
Охлаждение	6	20	5	25	300

10.7 Установление градуировочной характеристики

Установление градуировочной характеристики проводят перед каждой серией измерений массовой концентрации, а также после замены графитовой кюветы. Измерение градуировочных растворов проводят с добавкой модификатора матрицы Pd+Mg в соответствии с руководстом по эксплуатации спектрометра в следующей последовательности:

- проводят атомизацию раствора азотной кислоты 0,1 N и устанавливают нуль спектрофотометра;
- выбирают не менее пяти градуировочных растворов с таким расчетом,
 чтобы диапазон массовых концентраций сурьмы в них охватывал ожидаемый
 диапазон массовых концентраций в анализируемых пробах;
- построение градуировочного графика начинают с измерения градуировочного раствора с минимальной массовой концентрацией и заканчивают измерением градуировочного раствора с максимальной массовой концентрацией;

РД 52.18. 583 - 2011

- измерения каждого градуировочного раствора проводят не менее двух раз и усредняют;
- градуировочный график строят в координатах: по оси абсцисс массовая концентрация сурьмы, мкг/дм³, по оси ординат средняя величина аналитического сигнала.

11 Порядок выполнения измерений

11.1 Выполнение измерений в режиме электротермической атомизации

- 11.1.1 Измерение проб проводят с добавкой модификатора матрицы в соответствии с руководстом по эксплуатации спектрометра.
- 11.1.2 Цикл атомизации и измерения аналитического сигнала в анализируемой пробе проводят не менее двух раз.
- 11.1.3 Показания спектрометра регистрируют по форме, приведенной в приложении А.
- 11.1.4 Если измеренная массовая концентрация превышает максимальную массовую концентацию на градуировочном графике, пробу разбавляют раствором азотной кислоты 0,1 N и повторяют измерения.
- 11.1.5 После измерения 10 проб проводят проверку стабильности градуировочной характеристики по среднему градуировочному раствору. Если результат отличается от величины, полученной при градуировке, более чем на 10 %, то проводят повторную градуировку.

11.2 Выполнение измерений методом стандартных добавок

- 11.2.1 Атомизируют аликвоту раствора азотной кислоты 0,1 N.
- 11.2.2 Атомизируют аликвоту пробы, разбавленной в 2 раза раствором азотной кислоты 0,1 N, и регистрируют величину аналитического сигнала A.

- 11.2.3 Атомизируют аликвоту пробы с добавкой равного объема градуировочного раствора с массовой концентрацией сурьмы, равной примерно половине от массовой концентрации в исследумой пробе, и регистрируют величину аналитического сигнала А.
- 11.2.4 Атомизируют аликвоту пробы с добавкой равного объема градуировочного раствора с массовой концентрацией сурьмы, примерно равной массовой концентрации в исследуемой пробе, и регистрируют величину аналитического сигнала А.
- 11.2.5 Атомизируют аликвоту пробы с добавкой равного объема градуировочного раствора с массовой концентрацией сурьмы, примерно равной удвоенной концентрации в исследуемой пробе, и регистрируют величину аналитического сигнала А.
- 11.2.6 Строят график зависимости величины аналитического сигнала А от массовой концентрации С сурьмы в пробах с добавками (рисунок).

Пересечение полученной прямой с осью абсцисс дает значение массовой концентрации сурьмы в исследуемой пробе с обратным знаком.

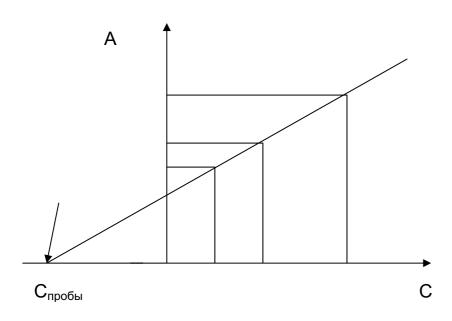


Рисунок – Зависимость аналитического сигнала A от массовой концентрации C

12 Проверка приемлемости результатов параллельных измерений

12.1 Результатом измерений массовой концентрации сурьмы \overline{C} , мкг/дм 3 , является среднее арифметическое двух результатов параллельных определений, рассчитанное по формуле

$$\overline{C} = \frac{C_1 + C_2}{2},\tag{1}$$

где C_1, C_2 – результаты параллельных определений массовой концентрации сурьмы, мкг/дм 3 .

Результаты двух параллельных определений массовой концентрации сурьмы признаются приемлемыми, если выполняется условие

$$\frac{\left|C_{1}-C_{2}\right|\cdot100}{\overline{C}}\leq r,$$
(2)

где r = 22 % — предел повторяемости для двух результатов параллельных определений при массовой концентрации сурьмы от 10 до 300 мкг/дм³ (что соответствует диапазону измерений от 1,0 до 25 мг/кг включительно в соответствии с таблицей 2).

12.2 Если условие (2) не выполняется, то измерение проводят еще раз. Результатом измерений является среднее арифметическое значение результатов трех определений, рассчитанное по формуле

$$\overline{C} = \frac{C_1 + C_2 + C_3}{3}, \tag{3}$$

где C_3 – результат третьего параллельного определения, мкг/дм³.

Результаты трех параллельных определений массовой концентрации сурьмы признаются приемлемыми, если выполняется условие

$$\frac{\mid C_{\text{max}} - C_{\text{min}} \mid}{\overline{C}} \le CR_{0.95}, \tag{4}$$

где C_{\max}, C_{\min} — максимальное и минимальное значения из трех полученных результатов параллельных определений, мкг/дм³;

 $CR_{0,95}$ = 3,3·r – критический диапазон для уровня вероятности P=0,95 и n=3 (согласно ГОСТ Р ИСО 5725-6, разделы 4, 5).

12.3 Если условие (4) не выполняется, то выясняют причины, устраняют их и повторяют измерения в соответствии с разделом 11.

13 Вычисление результатов измерений

Массовую долю сурьмы в пробах X, мг/кг, рассчитывают по формуле

$$X = \frac{(\overline{C} - \overline{C}_x) \cdot V}{m}, \tag{5}$$

где \overline{C} – среднее арифметическое значение результатов параллельных определений массовой концентрации сурьмы в пробе, признанных приемлемыми (см. раздел 12), мкг/дм 3 ;

 \overline{C}_{x} – среднее арифметическое значение результатов параллельных определений массовой концентрации сурьмы в холостой пробе, признанных приемлемыми (раздел 12), мкг/дм 3 ;

V — объем раствора, полученный после разложения пробы (по 10.4), дм 3 ; m — масса пробы, взятая на анализ, г.

14 Оформление результатов измерений

Результат измерений проб представляют в виде

$$X \pm \Delta$$
, P=0,95 (6)

где X — массовая доля сурьмы в пробе, мг/кг;

 Δ – абсолютное значение показателя точности методики, мг/кг, рассчитанное по формуле

$$\Delta = \frac{\delta \cdot X}{100} \,, \tag{7}$$

где δ – показатель точности методики, %. Значение δ приведено в таблице 1.

Если массовая доля сурьмы в пробе ниже нижней границы диапазона измерений, производят следующую запись: «Массовая доля сурьмы менее (указать значение нижней границы диапазона) мг/кг».

15 Внутренний контроль качества результатов измерений

15.1 Общие положения

Внутренний контроль качества результатов измерений в лаборатории предусматривает:

- проверку приемлемости результатов параллельных измерений согласно разделу 12;
- контроль процедуры измерений с использованием образцов для контроля (ОК);
- контроль процедуры измерений с использованием метода добавок (согласно МИ 2335);
 - контроль стабильности результатов измерений.

15.2 Контроль процедуры измерений проб с использованием ОК

15.2.1 Для контроля погрешности с применением ОК результат контрольного измерения аттестованной характеристики ОК сравнивают с его аттестованным значением.

Результат контрольной процедуры K_k , мг/кг, рассчитывают по формуле

$$K_k = X - B, (8)$$

где X – измеренное значение массовой доли сурьмы в ОК, мг/кг;

 $B\,$ – аттестованное значение массовой доли сурьмы в ОК, мг/кг.

15.2.2 Норматив контроля K, мг/кг, рассчитывают по формуле

$$K = \Delta_{\kappa}, \tag{9}$$

где Δ_{κ} – характеристика погрешности результатов измерений, соответствующая аттестованному значению ОК.

15.2.3 Проводят сопоставление результата контрольной процедуры с нормативом контроля. Процедуру измерений признают

удовлетворительной, если результаты контрольной процедуры удовлетворяют условию

$$\mid K_k \mid \leq K. \tag{10}$$

При невыполнении условия (10) контрольную процедуру повторяют. При повторном невыполнении условия (10) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

- 15.2.4 Результаты контрольной процедуры для контроля погрешности с применением ОК заносят в рабочий журнал регистрации результатов контроля погрешности, форма которого приведена в приложении Б.
- 15.2.5 Анализ ОК выполняют одновременно с пробами в полном соответствии с разделом 11.

15.3 Контроль процедуры измерений проб с использованием метода добавок

- 15.3.1 Для контроля погрешности с использованием метода добавок получают результаты контрольных измерений массовой доли сурьмы в рабочей пробе X и в рабочей пробе с внесенной известной добавкой X'.
- 15.3.2 Результат контрольной процедуры K_k , мг/кг, рассчитывают по формуле

$$K_k = X' - X - \mathcal{A}, \tag{11}$$

где \mathcal{I} — добавка сурьмы, мг/кг.

Норматив контроля K, мг/кг, рассчитывают по формуле

$$K = \sqrt{\Delta^2_{\pi, X'} + \Delta^2_{\pi, X}} , \qquad (12)$$

где $\Delta_{\pi,\chi}$ ($\Delta_{\pi,\chi}$) — характеристика погрешности результатов измерений, соответствующая массовой доле сурьмы в пробе с добавкой (рабочей пробе соответственно), мг/кг.

15.3.3 Проводят сопоставление результата контрольной процедуры с нормативом контроля.

Если результаты контрольной процедуры удовлетворяют условию,

$$\mid K_{k} \mid \leq K, \tag{13}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (13) контрольную процедуру повторяют. При повторном невыполнении условия (13) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

15.3.4 Результаты контроля процедуры измерений с использованием метода добавки заносят в рабочий журнал регистрации результатов контроля погрешности, форма которого приведена в приложении В.

15.4 Контроль стабильности результатов измерений

- 15.4.1 Контроль стабильности результатов измерений при реализации методики осуществляют в соответствии с ГОСТ Р ИСО 5725–(1-6) и с использованием контрольных карт согласно МИ 2335.
- 15.4.2 Периодичность контроля и контроль стабильности результатов измерений устанавливают в Руководстве по качеству лаборатории.

Приложение A (рекомендуемое)

Форма рабочего журнала регистрации результатов измерений массовой доли сурьмы

Проект:

Шифр пробы	Macca	Mac		онцентра	ция	Массовая доля
	пробы,		сурьмы	, мкг/дм ³		\bot сурьмы X , мг/кг
	Γ	C_1	C_2	C_3	\overline{C}	
Холостая проба № 1	_					
OK № 1						
Проба № 1						
Проба № 2						
Проба						
Проба № 20						
Холостая проба № 2						
OK № 2						
Проба № 21						
Проба № 22						
Проба № 23						
Проба						
Проба						
Оператор						

Проект:

Приложение Б (рекомендуемое)

Форма рабочего журнала регистрации результатов контроля погрешности с использованием образцов для контроля

Дата проведения ана	ілиза:			
Наименование ОК	Аттестованное значение сурьмы в ОК <i>В</i> , мг/кг	Массовая доля сурьмы X , мг/кг	Результат контрольной процедуры $K_{_{k},}$ мг/кг	Норматив контроля $K, мr/kr$

Оператор_		
	подпись	расшифровка подписи

Приложение В (рекомендуемое)

Форма рабочего журнала регистрации результатов контроля погрешности с использованием метода добавок

Проект: Добавка:

дата про	ведения измерен	нии:		
Шифр пробы		оля сурьмы в , мг/кг	Результат контрольной	Норматив контроля K , мг/кг
	рабочей	рабочей с	процедуры	
	X	добавкой	$K_{\scriptscriptstyle k}$, мг/кг	
		X'		
Ог	іератор		 	
		подпись	расшиф	ровка подписи

Библиография

[1] Правила по технике безопасности при производстве наблюдений и работ на сети Госкомгидромета. – Л.: Гидрометеоиздат, 1983

Ключевые слова: методика измерений, сурьма, проба, почва, донные отложения, метод атомно-абсорбционной спектрометрии, аликвота

Лист регистрации изменений

Номер		Номер ст	раницы		Номер	Под-	Да	та
изме-					докумен-	пись		
нения					та			
					(OPH)			
	изменен-	заменен-	новой	аннули-			вне-	вве-
	ной	ной		рованной			сения	дения
							изме-	изме-
							ния	нения

МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральная служба по гидрометеорологии и мониторингу окружающей среды Федеральное государственное бюджетное учреждение «Научно-производственное объединение « $\mathbf{T}\mathbf{A}\mathbf{\breve{M}}\mathbf{\Phi}\mathbf{Y}\mathbf{H}$ » (ФГБУ «НПО «Тайфун»)

Победы ул., 4, г. Обнинск Калужской обл., 249038 телефон: (48439)71540, факс: (48439)40910

СВИДЕТЕЛЬСТВО

об аттестации методики (метода) измерений № 18.24–2010

Методика измерений массовой доли сурьмы в пробах почв и донных отложений методом атомно-абсорбционной спектрометрии с электротермической атомизацией,

разработанная <u>Федеральным государственным бюджетным</u> учреждением «Научно-производственное объединение «Тайфун» (ФГБУ «НПО «Тайфун»), Победы ул., 4, Обнинск Калужской обл., 249038,

ды и регламентированная в

РД 52.18.583—2011 «Методика измерений массовой доли сурьмы в пробах почв и донных отложений методом атомно-абсорбционной спектрометрии с электротермической атомизацией» (30 с.)

аттестована в соответствии с ГОСТ Р 8.563-2009 «Методики (методы) измерений»:

- соответствует требованиям отбора проб почв по ГОСТ 17.4.3.01-83, проб донных отложений по ГОСТ 17.1.5.01-80;
- соответствует требованиям к методам определения загрязняющих веществ почв по ГОСТ 17.4.3.03-85.

Показатели точности установлены по ГОСТ Р ИСО 5725-(1-6)-2002 и РМГ 61-2003.

Аттестация осуществлена по результатам метрологической экспертизы материалов экспериментальных исследований по разработке методики измерений.

В результате аттестации методики измерений установлено, что методика измерений соответствует предъявляемым к ней требованиям и обладает основными метрологическими характеристиками, приведенными в приложении.

Генеральный дир

В.М. Шершаков

Приложение к свидетельству об аттестации методики (метода) измерений № 18,24-2010

Метрологические характеристики

по РД 52.18.583—2011 «Методика измерений массовой доли сурьмы в пробах почв и донных отложений методом атомно-абсорбционной спектрометрии с электротермической атомизацией»

Методика измерений обеспечивает получение результатов измерений с погрешностью, значение которой не превышает значений показателей, приведенных в таблице 1.

Таблица 1

Наиме-	Диапазон	Показатель	Показатель*	Показатель	Показатель
нование	измерений,	повторяемости	воспроизводимо-	правильности	ТОЧНОСТИ
опреде-	мг/кг	(среднее квадрати-	сти (среднее квад-	(границы, в ко-	(границы, в
ляемого		ческое отклонение	ратическое откло-	торых находит-	которых
компо-		результатов еди-	нение всех ре-	ся неисключен-	находится
нента		ничного определе-	зультатов изме-	ная системати-	погрешность
		ния, полученных	рений, получен-	ческая состав-	методики
		по методике в	ных по методике в	ляющая	при Р=0,95)
		условиях	условиях воспро-	погрешности)	
		повторяемости)	изводимости)	±δ _ε , %	±δ, %
		σ _r , %	σ _R , %	·	
Сурьма	От 1,0 до 25 включ	8,0	11	16	29
	• • • • • • • • • • • • • • • • • • • •	получен по резул	ьтатам эксперимент	альных исследов	аний в пяти

Диапазон измерений, значения предела повторяемости и предела воспроизводимости приведены в таблице 2.

Таблица 2

Наименование определяемого компонента	Диапазон измерений, мг/кг	Предел повторяемости для двух результатов параллельных определений г, %	Предел воспроизводимости для двух результатов измерений R, %
Сурьма	От 1,0 до 25 включ.	22	30

При реализации методики измерений в лаборатории обеспечивают:

- контроль исполнителем проведения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднего квадратического отклонения повторяемости, среднего квадратического отклонения внутрилабораторной прецизионности, погрешности).

Алгоритм контроля исполнителем процедуры проведения измерений приведен в документе на методику измерений.

Периодичность контроля и контроль стабильности результатов вымерений устанавливают в Руководстве по качеству лаборатории.

Дата выдачи свидетельства 20.10.10

Начальник ЦМТР —

главный метролог ФГБУ «НПО «Тайфун»

А.Ф. Ковалев