ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ (РОСГИДРОМЕТ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ИНСТИТУТ ГЛОБАЛЬНОГО КЛИМАТА И ЭКОЛОГИИ ИМЕНИ АКАДЕМИКА Ю.А. ИЗРАЭЛЯ» (ФГБУ «ИГКЭ»)

ОБЗОР СОСТОЯНИЯ РАБОТ НА СЕТИ НАБЛЮДЕНИЙ ЗА ЗАГРЯЗНЕНИЕМ ПОВЕРХНОСТНЫХ ВОД РОССИИ ПО ГИДРОБИОЛОГИЧЕСКИМ ПОКАЗАТЕЛЯМ в 2017 ГОДУ

Москва 2018 год

Предисловие

Методическое письмо обобщает результаты деятельности сети мониторинга загрязнения поверхностных вод по гидробиологическим показателям Федеральной службы по гидрометеорологии и мониторингу окружающей среды (Росгидромета) за 2017 год.

Письмо составлено на основе обработки представленных УГМС программ работ, справок о выполнении работ и ежегодников за 2017 год, а также по материалам отдельных запросов.

Методическое письмо подготовлено отделом гидробиологического мониторинга поверхностных вод ФГБУ «ИГКЭ».

Перечень сокращений

БП – бактериопланктон.

ГНС – государственная наблюдательная сеть.

ГС – Годовая справка о проведенных работах.

ГХИ - Федеральное государственное бюджетное учреждение «Гидрохимический институт».

ЕЖ – гидробиологический ежегодник.

 3Π – зоопланктон.

3Б – зообентос.

ИГКЭ - Федеральное государственное бюджетное учреждение «Институт глобального климата и экологии имени Академика Ю.А. Израэля».

КПО – карточки первичной обработки гидробиологических проб.

ПВС – поверхностные воды суши.

ПФ – перифитон.

 $\Phi\Pi$ – фитопланктон.

 Π P-17, Π P-18 — программы работ на 2017 и 2018 г.

УГМС – Территориальные управления Росгидромета в организационно-правовой форме федеральных государственных бюджетных учреждений.

ЦГМС – региональный Центр по гидрометеорологии и контролю окружающей среды Росгидромета.

Содержание

ВВЕДЕНИЕ4
І. ПОСТУПЛЕНИЕ ОТЧЕТНЫХ ДОКУМЕНТОВ ЗА 2017 ГОД ИЗ
ГИДРОБИОЛОГИЧЕСКИХ ПОДРАЗДЕЛЕНИЙ В ИГКЭ4
II. СОСТОЯНИЕ СЕТИ ГИДРОБИОЛОГИЧЕСКОГО МОНИТОРИНГА 5
III. ОБЪЕМ ВЫПОЛНЕННЫХ В 2017 ГОДУ РАБОТ НА СЕТИ
ГИДРОБИОЛОГИЧЕСКОГО МОНИТОРИНГА8
IV. ВЫПОЛНЕНИЕ ПРОГРАММ ГИДРОБИОЛОГИЧЕСКИХ РАБОТ В 2017
ГОДУ
V. ШТАТ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОСНАЩЕНИЕ
ЛАБОРАТОРИЙ166
VI. ТЕНДЕНЦИИ В ДЕЯТЕЛЬНОСТИ СЕТИ ГИДРОБИОЛОГИЧЕСКОГО
МОНИТОРИНГА НА 2018 ГОД177
VII. ВНЕШНИЙ КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОЕ
ГИДРОБИОЛОГИЧЕСКИХ ЛАБОРАТОРИЙ211
VIII. ВЫВОДЫ309
IX. РЕКОМЕНДАЦИИ30

ВВЕДЕНИЕ

Цель обзора состояния работ на сети наблюдений за загрязнением поверхностных вод России по гидробиологическим показателям в 2017 году — оценка деятельности гидробиологических подразделений в составе Управлений по гидрометеорологии и контролю окружающей среды (далее - УГМС) при проведении наблюдений на государственной сети режимных наблюдений за загрязнением поверхностных вод по гидробиологическим показателям (далее - сети гидробиологического мониторинга) в Российской Федерации в 2017 году и разработка рекомендаций на 2018 год по улучшению качества данных и оптимизации сети.

В Обзоре изложены результаты анализа, а также оценки полноты выполнения программ гидробиологических работ в отчётный год по структуре размещения сети (количество водных объектов, пунктов и створов наблюдения), по объёму выполненных работ (количество измеряемых показателей и проб), проведено сравнение с соответствующими данными за предыдущий 2016 год, выявлены тенденции в изменении состояния сети и объёму работ.

По результатам анализа деятельности подразделений и проведенных оценок подготовлены рекомендации для планирования работ подразделениями в составе УГМС, осуществляющими мониторинг загрязнения поверхностных вод по гидробиологическим показателям.

І. ПОСТУПЛЕНИЕ ОТЧЕТНЫХ ДОКУМЕНТОВ ЗА 2017 ГОД ИЗ ГИДРОБИОЛОГИЧЕСКИХ ПОДРАЗДЕЛЕНИЙ В ИГКЭ РОСГИДРОМЕТА И РАН

Сеть гидробиологического мониторинга в 2017 году включала 14 гидробиологических лабораторий, действующих в составе 11 УГМС. Оценка общей активности и исполнительской дисциплины осуществлялась на основании представленных за 2017 год отчетных документов.

- В 2017 году в ИГКЭ Росгидромета и РАН поступили следующие отчетные документы.
- 1. Годовые справки о проведенных гидробиологических работах были предоставлены из всех 11 подразделений.
- 2. Ежегодники загрязнения поверхностных вод по гидробиологическим показателям поступили, из всех 11 подразделений.
- 3. Программы гидробиологических работ на 2017 год поступили своевременно из **11 подразделений**.

По итогам 2017 года в научно-методический центр ИГКЭ все подразделения УГМС, осуществлявшие гидробиологические наблюдения в 2017 году предоставили полные пакеты отчётных документов.

На основании отчетных документов, согласно приказу МПР России от 07.05.2008 № 111 и в соответствии с поручением Росгидромета ИГКЭ своевременно представил в Федеральное агентство водных ресурсов Российской Федерации метаданные государственного мониторинга загрязнения поверхностных вод суши по гидробиологическим показателям.

В целом, за 2017 год существенно повысилась оперативность и полнота предоставления отчетных документов по сравнению с периодом 2010-2015 гг. Это связано с внедрением электронного документооборота и активным использованием электронных средств связи, применении компьютерных форматов предоставления данных в УГМС.

Дополнительно к программам, справкам и региональным ежегодникам всеми подразделениями УГМС были предоставлены в ИГКЭ карточки первичной обработки проб (КПО) в электронном формате.

Хранение первичной информации осуществляется во всех УГМС на бумажных дублирование электронных носителях. такое первичной информации предотвращает возможную потерю данных. В то же время, несмотря на рекомендации, форматы КПО в УГМС до сих пор не унифицированы, что затрудняет формирование всероссийской базы данных по гидробиологическим показателям. В 3х подразделениях (Приволжское, Якутское и УГМС Республики Татарстан) частично представили КПО в унифицированном формате. Доводим до сведения УГМС, перешедших в унифицированный формат, о необходимости заполнения каждой строки в части: «Код водного объекта», «код пункта наблюдений», «название пункта», «даты» и «глубины отбора». Целесообразно в графе «орудие отбора» указывать цифровое значение S – площади (V – объема) в соответствующем формате метрической системы, без уточнения орудия отбора.

II. СОСТОЯНИЕ СЕТИ ГИДРОБИОЛОГИЧЕСКОГО МОНИТОРИНГА

В 2017 году гидробиологические наблюдения проводили на **130** пресноводных объектах, в **204** пунктах и на **303** створах. В предыдущем, 2016 году аналогичные показатели имели, соответственно, значения **133**, **205** и **309** (табл. 2). Мониторинг прибрежных морских экосистем проводили на **4** морских водных объектах, **43** пунктах и **43** станциях (табл.3).

В целом, государственной наблюдательной сетью (далее - ГНС) за загрязнением поверхностных вод России по гидробиологическим показателям за прошедший год охвачено 32% пунктов режимного наблюдения за загрязнением поверхностных вод суши (ПВС) по гидрохимическим показателям. Из УГМС, в состав которых включены гидробиологические подразделения, наблюдения

проводятся лишь на **50**% створов, на которых осуществляется гидрохимический контроль. Количественное соотношение лотических (144 пунктов), лентических (62 пункт) и 43 станциях морских экосистем, на пунктах которых осуществляется мониторинг, приближено к пропорции 3:1,5:1, в то время, как соотношение аналогичных пунктов гидрохимических наблюдений 6:1.

Система и характер наблюдений не в полной мере соответствует требованию проведения сопряженных гидрохимических и гидробиологических наблюдений, но отражает специфику этих двух подходов.

Наиболее развита сеть гидробиологических наблюдений за пресноводными объектами на территориях Мурманского, Дальневосточного, Иркутского, Северо-Кавказского, Приволжского и Забайкальского УГМС. Наибольший охват морских акваторий в отчетном году принадлежал Северо-Западному ЦГМС.

Однако, по-прежнему, мониторингом затронуты преимущественно средне и слабо загрязненные участки водных объектов. Подавляющее большинство пунктов наблюдений (62%) на протяжении нескольких последних лет относится к категории 3 - слабо загрязнённые участки. Недостаточно охвачены фоновые районы и крупные города. Так, из 15 российских городов-миллионеров режимные наблюдения проводятся только на водных объектах в 5 городах (Казань, Красноярск, Ростов-на-Дону, Нижний Новгород и Самара).

К наиболее важным с хозяйственной, социальной и научной точки зрения относятся водные объекты 1-ой и 4-ой категорий, на них приходится 32% (в 2014 – 37%) от всех охваченных режимными гидробиологическими наблюдениями пунктов сети. В тоже время режимными наблюдениями по гидрохимическим показателям на долю 1-ой и 4-ой категории приходится около 60 % пунктов.

Охват территорий и, соответственно, объем гидробиологичеких наблюдений УГМС варьирует в широком диапазоне от 3 до 29 водных объектов. Наибольшее число наблюдений и водных объектов принадлежит Мурманскому и Дальневосточному УГМС (29 и 20 — соответственно). Суммарно, в 2017 г. как и в предыдущие 2016-2014 гг., они осуществляли мониторинг на 37% водных объектов сети.

В 4-х УГМС в отчетный год наблюдения осуществлялись на 13-15 водных объектах: Северо-Кавказское (15), Иркутское (14), Забайкальское и Приволжское по (13). На долю этих подразделений приходится 41% водных объектов сети.

В 5-ти УГМС наблюдения проводятся на 22% (от 3 до 8водных объектов) сети: Северо-Западное УГМС — 8; УГМС Республики Татарстан — 7, Среднесибирское — 6, и Верхне-Волжское — 5, Тиксинский ЦГМС — 3. Аналогичная ситуация характерна для набора пунктов и створов наблюдений.

Состояние гидробиологической сети наблюдений в подразделениях следует охарактеризовать также показателем *обеспеченность водных объектов створами*. Он представляет собой среднее количество створов, приходящихся на водный объект (Nc/No). В 2017 г обеспеченность водных объектов створами варьировала в пределах

 Таблица 1

 Обеспеченность основных водных объектов створами в 2015-2017 годах

Водный объект		еспеченность		УГМС
_	2015 г.	2016 г.	2017 г.	
р. Волга всего: В том числе:	50	50	70	Верхне-Волжское; Приволжское; Республики
				Татарстан; Северо-Кавказское (Астраханский ЦГМС)
Куйбышевское вдхр.	20	20	30	Приволжское; Республики Татарстан
Чебоксарское вдхр.	10	10	10	Верхне-Волжское
Саратовское вдхр.	10	10	11	Приволжское
Волгоградское вдхр.	-	-	10	Приволжское
р. Волга нижнее течение	10	10	10	Северо-Кавказское (Астраханский ЦГМС)
р. Амур	14	14	14	Дальневосточное
р. Ангара (с Иркутским вдхр)	10	10	10	Иркутское
р. Дон	14	14	17	Северо-Кавказское (Ростовский ЦГМС)
р.Селенга	8	8	8	Забайкальское
р. Северский Донец	6	6	3	Северо-Кавказское (Ростовский ЦГМС)
р. Степной Зай	8	8	8	Республики Татарстан
р.Патсо-Йоки	5	5	5	Мурманское
р. Енисей	4	4	4	Среднесибирское
р. Большая Бира	-	4	4	Дальневосточное
оз. Чудское	6	6	6	Северо-Западное (Псковский ЦГМС)
оз. Имандра	6	6	6	Мурманское
оз. Онежское	5	9	9	Северо-Западное (Карельский ЦГМС)
р. Зея	4	4	4	Дальневосточное
оз. Псковское	4	4	4	Северо-Западное (Псковский ЦГМС)
оз. Ханка	8	-	-	Приморское
р. Раздольная	4	-	-	Приморское

от 1,3 до 7,5 (Табл. 2). Как правило, на протяженных и крупных водных объектах наблюдения обычно выполняются на нескольких створах и отношение Nc/No оказывается наиболее высоким: Северо-Западного (3,2), по 2,1 у Верхне-Волжского

УГМС и Приволжского УГМС, Дальневосточное УГМС (1,8), Республики Татарстан и Забайкальском УГМС по 1,7. Для остальных подразделений этот показатель находится в пределах 1,0-1,3.

Наиболее обеспечены створами крупные водные объекты — реки: Волга, включая каскад Волжских водохранилищ (70), Дон (17) и Амур (14), Енисей с Ангарой (14), Селенга (8), а также водоемы: оз. Онежское (9), Чудское и Имандра (по 6). Из 20-ти водных объектов, количество створов на которых в 2014 г. было более 3-х, в 2017 г. остались под наблюдением 19 (табл. 1).

III. ОБЪЕМ ВЫПОЛНЕННЫХ В 2017 ГОДУ РАБОТ НА СЕТИ ГИДРОБИОЛОГИЧЕСКОГО МОНИТОРИНГА

В таблице 2 приведены параметры оценки состояния гидробиологической сети наблюдений в 2017 году по отношению к 2016 году. Структура и объем наблюдений в 2017 г. остались на уровне 2015 г. В 12 подразделениях основные параметры сети наблюдений сохранены неизменными. Основные изменения произошли в Мурманском УГМС — в сравнении с 2016 г. сеть наблюдений сократилась на 3 водотока в связи с сокращением финансирования на реках: Вува, Нота и Териберка.

В связи с отсутствием специалиста, приостановлены наблюдения за бактериопланктоном в Приморском УГМС (табл. 3)

В таблице 4 представлены данные по использованию в подразделениях пяти основных гидробиологических показателей: фитопланктон, зоопланктон, перифитон, зообентос и бактериопланктон.

В 2017 г, как и в предыдущие 2013-2016 гг., ни в одном из 11-и УГМС, не проводили наблюдения по всем 5-ти показателям. Максимальное число использованных показателей составляет 4-ре в: Иркутском УГМС (без перифитона), Приволжском и Дальневосточное (без бактериопланктона). По 3 основных показателя использовали 6 подразделений: Мурманское, Забайкальское, Северо-Западное УГМС и УГМС Республики Татарстан (без перифитона и бактериопланктона),

Таблица 2 Количество пресноводных объектов (No), пунктов (Nп) и створов (Nc) на сети гидробиологического мониторинга в 2016 г. и 2017 г. и изменения их числа от 2016 г. к. 2017 г.

	2016		Γ.	2017		г.		енени 6 к 20		OOC17
УГМС и подразделения	(факт	ически)	(факт	ΔN N16	= N	(Nc/No)			
	No	Νп	Nc	No	Νп	Nc	No	Νп	Nc	
1. Мурманское	32	51	52	29	49	49	-3	-2	-3	1,0
2.Верхне-Волжское	5	8	17	5	8	17	0	0	0	2,1
3. Приволжское	13	20	40	13	20	42	0	0	2	2,1
4.1 Астраханский ЦГМС	5	8	10	5	8	10	0	0	0	1,3
4.2 Ростовский ЦГМС	8	21	28	8	22	28	0	1	0	1,3
4.3. Краснодарский ЦГМС	2	4	5	2	4	5	0	0	0	1,3
5. Среднесибирское	6	8	10	6	8	10	0	0	0	1,3
6. Иркутское	14	22	32	14	22	27	0	0	-5	1,2
7. Забайкальское	13	16	27	13	16	27	0	0	0	1,7
8. Якутское	3	4	4	3	4	4	0	0	0	1,0
9. Дальневосточное	20	27	49	20	27	49	0	0	0	1,8
10. Северо-Западное	5	5	16	5	5	16	0	0	0	3,2
11. Республики Татарстан	7	11	19	7	11	19	0	0	0	1,7
Всего	133	205	309	130	204	303	-3	-1	-6	1,5

Таблица 3 Количество морских станций сети гидробиологического мониторинга в 2016 г. и 2017 г. и изменения их числа от 2016 г. к. 2017 г.

УГМС и подразделения		.6 г. ически))17 г. гически)	Изменения от 2016 к 2017г			
ут ме и подразделения	(1		(1		$\Delta N = N_{17} - N_{16}$			
	Νп	Nc	Νп	Nc	Νп	Nc		
1.Краснодарский ЦГМС	3	3	3	3	0	0		
2. Якутское	1	1	1	1	0	0		
9. Приморское	39	39	0	0	-39	-39		
10. Северо-Западное	39	39	39	39	0	0		
Всего	82	82	43	43	-39	-39		

Таблица 4 Количество выполненных измерений гидробиологических показателей в 2016 и 2017 гг.

УГМС и	Коли	ичество	выполн	енных і	измере	ений					-	енения г. к 20				Общая сумма измерений по подразделениям		
подразделения	2016	г. (Фак	тически	ı)		2017 г.	(Фактич	ески)			ΔN =	N ₁₇ - 1	N ₁₆			по подр	азделени	ZIVI
	ΦП	3П	ПФ	3Б	БП	ΦП	3П	ПФ	3Б	БП	ΦП	3П	ПФ	3Б	БП	2016г	2017г	N ₁₇ -N ₁₆
1. Мурманское	122	58		46		106	58		63		-16	0	0	17	0	226	227	1
2.Верхне-Волжское	132	132				132	132				0	0	0	0	0	264	264	0
3. Приволжское	155	155	155	155		177	177	177	177		22	22	22	22	0	620	708	88
4.Астраханский ЦГМС	64			156		64			156		0	0	0	0	0	220	220	0
5.Ростовский ЦГМС				90					99		0	0	0	9	0	90	99	9
6. Среднесибирское		70	70	70			70	70	70		0	0	0	0	0	210	210	0
7. Иркутское	100	151		164	103	108	138		134	138	8	-13	0	-30	35	518	518	0
8. Забайкальское	121	106		118		121	106		118		0	0	0	0	0	345	345	0
9. Якутское	40			40		40			40		0	0	0	0	0	80	80	0
10.Дальневосточное	25	349	15	253		25	312	15	293		0	-37	0	40	0	642	645	3
11.Северо-Западное	30	30		54		107	211		176		77	181	0	122	0	114	494	380
12.Республики Татарстан	69	69		69		69	69		69		0	0	0	0	0	207	207	0
Всего	858	1120	240	1125	103	949	1273	262	1395	138	91	153	22	270	35	3530	4017	487

(обозначения: $\Phi\Pi$ – фитопланктон, 3Π – зоопланктон, $\Pi\Phi$ – перифитон, 3Б – зообентос, $Б\Pi$ – бактериопланктон)

Среднесибирское (без фито- и бактериопланктона). По 2 показателя использовали 3 подразделения: Астраханский ЦГМС, Якутское и Верхне-Волжское УГМС (в основном использовали зообентос и зоопланктон, реже фитопланктон). Такое использование основных показателей для характеристики состояния водных объектов наблюдается в последние 4 года 2013-2017 гг.

По частоте использования основные показатели в 2014-2016 гг. сохраняются неизменными и составляют следующий ряд (по убыванию): зообентос, фито-, зоопланктон, перифитон и бактериопланктон (табл. 5).

 Таблица 5

 Частота использования основных показателей в 2015-2017 гг.

	Использов	ан в подразд	елениях
Показатель	2015 год	2016 год	2017 год
Зообентос	11	11	11
Фитопланктон	10	10	10
Зоопланктон	9	9	9
Перифитон	2	3	3
Бактериопланктон	1	1	1

Наиболее широко наблюдается показатель — зообентос. Показатель бактериопланктон наблюдает только Иркутское УГМС, а перифитон — Приволжское, Средне-Сибирское и Дальневосточное УГМС. В таблице 6 приводится общее количество собранных проб по каждому из показателей.

Таблица 6
Общее количество сооранных проо по каждому из показателеи.

Таблица 6

Показатель	Всего в 2016	Количеств измеренны 2016 г.	_	Всего в 2017 г.	Количество измеренных проб в 2017 г.					
	г. Водотоки В		Водоемы		Водотоки	Водоемы	Моря			
Зообентос	1125	907	218	1399	1062	264	73			
Зоопланктон	1120	767	353	1273	724	469	80			
Фитопланктон	858	563	295	953	473	389	91			
Перифитон	240	195	45	262	130	132				
Бактериопланктон	103	78	25	138	93 45					

Структура использования показателей в лотических и лентических экосистемах, в целом, адекватно учитывает их специфику. Для оценки состояния лотических экосистем наиболее информативными показателями являются зообентос и перифитон, в то время, как для лентических — состояния сообществ фитопланктона и зоопланктона.

Кроме пяти основных, в семи УГМС проведены наблюдения по четырем дополнительным показателям: продукция-деструкция органического вещества, содержание хлорофилла и других пигментов фитопланктона, биотестирование качества вод. Объем наблюдений по дополнительным показателям представлен в таблице 7.

Таблица 7 Количество проб по дополнительным гидробиологическим показателям в 2015-2017 гг.

УГМС и подразделения	2015 г.	2016 г.	2017 г.								
Продукция – деструкция органичес	кого веще	ества									
Верхне-Волжское 42 42 42											
Ростовский ЦГМС	90	90	78								
Пигменты фитопланкто	на										
Дальневосточное УГМС	103	90	90								
Забайкальское УГМС	47	47	47								
Биотестирование											
Среднесибирское	70	70	70								
Хлорофилл-а											
Северо-Западное УГМС	110	54	194								

По количеству измерений в 2017 году общее число отобранных и обработанных проб значительно возросло, так, за счет включения морских акваторий и наблюдений на Онежском озере, ранее не учитываемых в отчетной Северо-Западном документации наблюдений, В УГМС увеличилось на 380, заметное увеличение отобранного материала отмечено и в Приволжском УГМС - 88 проб – за счет возобновления мониторинга на Волгоградском водохранилище, незначительные превышения отобранных материалов также актуальны для Дальневосточного УГМС - 3 пробы и Ростовского ЦГМС – 9 проб. В результате, общее количество проб в 2017 году (4017) возросло за счет наблюдений на Онежском озере, Невской губе и восточной части Финского залива Балтийского моря в Северо-Западном УГМС, по отношению к 2016 году (3530) на 12 % (487 проб).

Таким образом, общий фактический объем проведенных работ на ГНС в $2017~\mathrm{\Gamma}$. возрос в сравнении с $2016~\mathrm{\Gamma}$

IV. ВЫПОЛНЕНИЕ ПРОГРАММ ГИДРОБИОЛОГИЧЕСКИХ РАБОТ В 2017 ГОДУ

О выполнении запланированных работ можно судить, сравнивая фактические данные о деятельности гидробиологических подразделений в 2017 году (отраженные в гидробиологических Ежегодниках и Годовых справках о выполненных работах в 2017 году) с запланированной деятельностью (указанной в представленных программах работ на 2017 год). Состояние сети (количество водных объектов, пунктов и створов), запланированное и выполненное, представлено в таблице 8. Объем работ (использованные показатели и количество взятых проб), запланированный и выполненный, представлен в таблице 9.

По количеству водных объектов, пунктов и створов в 2017 г все УГМС произвели полный объем запланированных наблюдений. Тем не менее, в Приволжском (Тольяттинском) УГМС отобраны дополнительные материалы по всем наблюдаемым показателям (кроме бактериопланктона) в Куйбышевском водохранилище в объеме 120 проб, а так же в Волгоградском водохранилище в объеме 120 проб по тем же показателям, не заявленные ранее в Программе. Перевыполнение программы составило 51%. Наибольшее перевыполнение плана зарегистрировано в Северо-Западном УГМС, отобраны дополнительные материалы по всем наблюдаемым показателям в Восточной части Финского Залива в объеме 56 проб, а также пробы из Петрозаводской губы Онежского озера в объеме 78 проб, по тем же показателям и из Невской губы — 180 проб по показателям: фитопланктон, мезозоопланктон и макрозообентос, не заявленные ранее в Программе. Перевыполнение программы составило 275 %. В то же время наблюдалось незначительное снижение программы в Иркутском УГМС вызванное аномальными погодными условиями и невозможностью отбора проб с судна. В связи с этим дополнительно отобрали пробы бактерио- и зоопланктона в Иркутском водохранилище и реках Белая и Ушаковка. Во всех остальных подразделениях работы выполнены согласно плану.

В общем балансе на гидробиологической сети в 2017 году перевыполнение плана по видам измерения составило 21% (723 измерения). При этом положительный баланс и перевыполнение плана отмечено для Приволжского, Северо-Западного и Дальневосточного УГМС. В 9 лабораториях объемы работ по отбору и обработке проб выполнены полностью.

Сокращение объема работ в 2017 году является плановым, выполняемым под влиянием сокращение, бюджетного финансирования.

Таблица 8 Выполнение программы в 2017 г. по охвату пресноводных объектов, пунктов и створов ГНС

		воров					Выпот	інение			
	2017 г							аммы в	2017		
VENC							Γ				
УГМС и подразделения	По пр	ограмме		Факти	чески		$\Delta N17 = (N\varphi - N\pi p)17$				
	No	Νп	Nc	No	Νп	Nc	No	Νп	Nc		
1. Мурманское	29	37	48	29	49	49	0	12	1		
2.Верхне-Волжское	5	8	17	5	8	17	0	0	0		
3. Приволжское	13	20	31	13	20	42	0	0	11		
4. Астраханский ЦГМС	5	10	10	5	8	10	0	-2	0		
5.Ростовский ЦГМС	10	26	34	10	26	34	0	0	0		
6. Среднесибирское	6	7	10	6	8	10	0	1	0		
7. Иркутское	14	17	30	14	17	30	0	0	0		
8. Забайкальское	13	16	27	13	16	27	0	0	0		
9. Якутское	3	4	4	3	4	4	0	0	0		
10.Дальневосточное	20	27	49	20	27	49	0	0	0		
11.Северо-Западное	5 5 16 5 5 16							0	0		
12.Республики Татарстан	7 11 19 7 11 19							0	0		
Всего	130	188	295	130	199	307	0	11	12		

Обозначения: No - количество водных объектов, Nп - количество пунктов; Nc — количество створов на гидробиологической сети. Nф — фактический объем; Nпр - запланированный объем

Таблица 9 Выполнение программы в 2017 г. по количеству проб используемых гидробиологических показателей

					201	17г					Выпол	інение	прогр	раммы		Общая програ		проб по Упр) и
VEMC и подрежденения											в 2017	Γ				фактич	ески (Х	Јф) и их
УГМС и подразделения	По программе (Мпр)				Фактически (Nф)					ΔN17=	= (Nф -	- Nпр))17		разница (Δ)			
	ФΠ	ЗП	ПФ	3Б	БП	ФΠ	3П	ПФ	3Б	БП	ΦП	3П	ПФ	3Б	БП	Nпр	Νф	Nф- Nпр
1. Мурманское	103	54		62		106	58		63		3	4	0	1	0	219	227	8
2. Верхне-Волжское	132	132				132	132				0	0	0	0	0	264	264	0
3. Приволжское	117	117	117	117		177	177	177	177		60	60	60	60	0	468	708	240
4. Астраханское ЦГМС	64			156		64			156		0	0	0	0	0	220	220	0
5. Ростовское ЦГМС				90					99		0	0	0	9	0	90	99	9
6. Среднесибирское		70	70	70			70	70	70		0	0	0	0	0	210	210	0
7. Иркутское	108	138		134	102	108	138		134	138	0	0	0	0	36	482	518	36
8. Забайкальское	121	106		118		121	106		118		0	0	0	0	0	345	345	0
9. Якутское	41			41		41			41		0	0	0	0	0	82	82	0
10. Дальневосточное	25	308	14	248		25	312	15	293		0	4	1	45	0	595	645	50
11. Северо-Западное	30	30		54		107	211		176		77	181	0	122	0	114	494	380
12.Республика Татарстан	69	69		69		69	69		69		0	0	0	0	0	207	207	0
Всего	810	1024	201	1159	102	950	1273	262	1396	138	140	249	61	237	36	3296	4019	723

Обозначения: Nф = фактический объем; Nпр = запланированный объем;

 $\Phi\Pi$ – фитопланктон, 3Π – зоопланктон, $\Pi\Phi$ – перифитон, 3Б – зообентос, $Б\Pi$ – бактериопланктон.

V. ШТАТ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОСНАЩЕНИЕ ЛАБОРАТОРИЙ

Всего на сети Росгидромета, по данным годовых справок в 2017 г. работало 42 специалиста-гидробиолог. В 7 из 14 подразделений, численность персонала в лабораториях ограничивается 1-2 специалистами. Наиболее укомплектованы сотрудниками лаборатории Иркутского и Приволжского УГМС, в их штате по 8 специалистов (табл. 10). В Среднесибирском, Забайкальском и Мурманском УГМС, а также в Северо-Западном ЦГМС по 3 гидробиолога. В остальных по 1-2 специалисту. В 2017 году значительно увеличилась средняя нагрузка на гидробиологов, так, в 2016 году оно составляло 86 проб, в отчетный год — 126 проб/ шт.ед. Прежде всего, это произошло за счет сокращения штатной численности в большинстве УГМС. Тем не менее, наибольшая производительность труда гидробиологов попрежнему в лаборатории Дальневосточного УГМС — 368 проб/шт.ед., а также УГМС Республики Татарстан — 207 проб/шт.ед. Наименьшие значения — в лабораториях Якутского УГМС — 41 проб/шт.ед и Псковского ЦГМС — 30 проб/шт.ед, что определяется удаленностью объектов.

Таблица 11. Среднее количество проб на одного специалиста УГМС в 2017 г.

		Среднее			б на спе		та	
УГМС	Штат, чел.	кол-во проб на 1 сотрудника	ФП	ЗП	ПФ	3Б	БП	Доп. мат.
Верхне-Волжское	2	153	132	132				42
Дальневосточное	2	368	25	312	15	293		90
Забайкальское	3	131	121	106		118		47
Иркутское	8	65	36	69		45	46	
Мурманское	3	75	106	58		46		
Приволжское	8	89	177	59	59	59		
Северо-Западное	3	86	87	80	-	69	-	107
Псковское	2 (1 ст)	30	20	20	-	20	-	-
Петрозаводское	1	225	-	51	-	87		87
Астраханское	2	110	64			156		
Ростовское	2	95				99		90
Среднесибирское	3	93		70	70	70		70
Республики Татарстан	1	207	69	69		69		
Якутское	2	41	41			41		

VI. ТЕНДЕНЦИИ В ДЕЯТЕЛЬНОСТИ СЕТИ ГИДРОБИОЛОГИЧЕСКОГО МОНИТОРИНГА НА 2018 ГОД

Тенденции изменений сети гидробиологического мониторинга в 2018 году оцениваются методом сравнения фактических данных о деятельности гидробиологических подразделений за 2017 г. (отраженных в гидробиологических Ежегодниках и годовых справках о работах, выполненных в 2017 г.) с запланированной деятельностью на 2018 г. (намеченной в программах).

Изменения в состоянии сети по пресноводным объектам от 2017 г. к 2018 г. отражены в таблице 12. По морским экосистемам в таблице 13. В 10-ти Республик Татарстан, Верхне-Волжском, подразделениях (УГМС Приволжском, Якутском, Среднесибирском, Иркутском, Забайкальском, Дальневосточном, Астраханском и Ростовском ЦГМС) в 2018 г. основные структурные показатели сети (количество водных объектов, пунктов и створов) останутся не измененными. Отрицательные значения в таблице 10 в Мурманском УГМС отражают сокращение сети на 11 водных объектах: водотоки – Отводной канал реки Нива, Ковдора, Можель, Ена, Вирма, а также водоемы – о.Монче, о.Пермус, о.Ловозеро, о.Семеновское, о.Ледовое и о.Большое, в тоже время в 2018 г., будут восстановлены наблюдения на реках Вува и Нотта.

В Иркутском УГМС, как указывалось ранее, в 2016/2017 гг. для выполнения программы наблюдений Иркутским УГМС проведены дополнительные исследования на реках Белая и Ушаковка, в связи с этим мы не видим сокращение в показателях сети. В Приволжском УГМС в программу не вошли 12 створов Волгоградского водохранилища выполненных в отчетном году дополнительно.

В Северо-Западном УГМС – отрицательные значения (табл.13) означают, что финансирование мониторинга Восточной части Финского залива Балтийского моря производятся из средств Ленинградской области на конкурсной основе и не может быть включено в официальную программу наблюдений.

Изменения в объеме работ от 2017 года к 2018 году в сравнении с фактически реализованными наблюдениями 2017 года представлено в таблице 14. В 2018 г. так же как и в предыдущие периоды 2016/2017 отчетные годы наблюдается сокращение запланированного к реализованному в Мурманском УГМС — -61 проба за счет сокращения штатной численности и снижения финансирования, вызвавших приостановку мониторинга 11 водных объектов, указанных выше. В Приволжском УГМС — -120 за счет дополнительно проводимых в указанные годы наблюдений по всем показателям в Куйбышевском и Волгоградском водохранилищах. В Северо-Западном

управлении планируется сокращение наблюдаемых параметров в сравнении с 2017 г — - 230 проб за счет Восточной части Финского залива, мониторинг которого производится на тендерной основе за счет средств Ленинградской области. В Иркутском УГМС сокращение проб — -40 за счет дополнительных материалов, отобранных в Братском, Иркутском водохранилищах, реках Голоустная, Ушаковка и Ангара.

В 2018 г запланировано значительное увеличение отбора проб в УГМС Республики Татарстан на 72 пробы в связи с передачей 6 пунктов и 10 створов Куйбышевского водохранилища, ранее контролируемых Приволжского УГМС в ведомство УГМС Республики Татарстан.

В целом, можно отметить, что в 2018 году основные показатели структуры сети наблюдений сократятся на 8% водных объектов, 7% пунктов, на 10% створов и на 11% проб.

Таблица 12 Планируемая на 2018 год структура гидробиологической сети пресноводных объектов и ее изменения по отношению к 2017 году

объектов и се изменения по отношению к 2017 году													
WENG	Струг	ктура с	ети				Изменения в структуре сети к 2017						
УГМС и подразделения	2017 (Факт	г. гически	1)	2018 і (прог	г. рамма)		$\Delta N = N_{18} - N_{17}$						
	No	Νп	Nc	No	Νп	Nc	No	Νп	Nc				
1. Мурманское	29	49	49	20	31	30	-9	-18	-19				
2. Верхне-Волжское	5	8	17	5	8	17	0	0	0				
3. Приволжское	13	20	42	13	20	30	0	0	-12				
4. Астраханское ЦГМС	5	10	10	5	10	10	0	0	0				
5. Ростовское ЦГМС	10	26	34	10	26	34	0	0	0				
6. Среднесибирское	6	8	10	6	8	10	0	0	0				
7. Иркутское	14	17	27	14	17	27	0	0	0				
8. Забайкальское	13	16	27	13	16	27	0	0	0				
9. Якутское	3	4	4	3	4	4	0	0	0				
10. Дальневосточное	20	27	49	20	27	49	0	0	0				
11. Северо-Западное	5	5	16	5	5	16	0	0	0				
12. Республика Татарстан	7	11	19	7	17	29	0	6	10				
Всего	130	201	304	121	189	283	-9	-12	-21				

Обозначения: No – количество объектов; Nп – количество пунктов; Nc – количество створов.

 Таблица 13

 Планируемая на 2018 год структура гидробиологической сети морским водным объектам и ее изменения по отношению к 2017 году

VEMC и подразделения	2017 г. (фактич	чески)	2018 г (план		Изменения от 2017 к 2018г		
УГМС и подразделения	(1		(,	$\Delta N = N_{18} - N_{17}$		
	Νп	Nc	Νп	Nc	Νп	Nc	
1.Краснодарский ЦГМС	3	3	3	3	0	0	
2. Якутское	1	1	1	1	0	0	
9. Приморское	0	0	0	0	0	0	
10. Северо-Западное	39	39	24	24	-15	-15	
Всего	43	43	28	28	-15	-15	

Таблица 14 Объем работ по количеству используемых гидробиологических показателей запланированных в 2018 году в сравнении с реализованным в 2017 году

Ke				Кол	тичест	ество проб				Изменения от 2017 г. к 2018г				Объем проб в 2018 г,				
УГМС и подразделения	2017 г. (Фактически)				2018 г. (план)				$\Delta N0 = N_{18} - N_{17}$				2017 г и его изменение в 2018 г					
	ΦП	3П	ПФ	3Б	БП	ΦП	3П	ПФ	3Б	БП	ΦП	3П	ПФ	3Б	БП	2017	2018	N18- N17
1. Мурманское	106	58		63		75	40		51		-31	-18	0	-12	0	227	166	-61
2. Верхне-Волжское	132	132				132	132				0	0	0	0	0	264	264	0
3. Приволжское	177	177	177	177		147	147	147	147		-30	-30	-30	-30	0	708	588	-120
4. Астраханский ЦГМС	64			156		64			156		0	0	0	0	0	220	220	0
5. Ростовский ЦГМС				99					99		0	0	0	0	0	99	99	0
6. Среднесибирское		70	70	70			70	70	70		0	0	0	0	0	210	210	0
7. Иркутское	108	138		134	138	108	138		134	98	0	0	0	0	-40	518	478	-40
8. Забайкальское	121	106		118		121	106		118		0	0	0	0	0	345	345	0
9. Якутское	41			41		41			41		0	0	0	0	0	82	82	0
10. Дальневосточное	25	312	15	293		25	308	15	248		0	-4	0	-45	0	645	596	-49
11. Северо-Западное	107	211		176		54	99		111		-53	-112	0	-65	0	494	264	-230
12.Республики Татарстан	69	69		69		93	93		93		24	24	0	24	0	207	279	72
Всего	950	1273	262	1396	138	860	1133	232	1268	98	-90	-140	-30	-128	-40	4019	3591	-428

Обозначения: $N \varphi$ - фактические данные; $N \pi \rho$ - запланированные данные; $\Phi \Pi$ - фитопланктон, 3Π - зоопланктон, $\Pi \Phi$ - перифитон, 3E - зообентос, $E\Pi$ - бактериопланктон

VII. ВНЕШНИЙ КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ ГИДРОБИОЛОГИЧЕСКИХ ЛАБОРАТОРИЙ

Интеркалибрация

Контроль качества данных является обязательным условием работы с данными мониторинга, так как невозможно получить адекватную оценку состояния экосистем и качества воды при низком уровне исходных данных.

Внешний контроль качества проведен научно-методическиим центром гидробиологической сети ФГБУ «ИГКЭ» в рамках выполнения темы 1.4.4.9 «Научно-методическое и нормативное обеспечение деятельности сети наблюдений за состоянием экосистем поверхностных вод суши по гидробиологическим показателям» Целевой научно-технической программы «Научно-исследовательские, опытно-конструкторские, технологические и другие работы для государственных нужд в области гидрометеорологии и мониторинга окружающей среды» на 2017-2019 годы».

количественной Контроль качественной И обработки гидробионтов (макрозообентос) выполнен в период с августа по октябрь 2017 форме сличительных испытаний (интеркалибрации) отделом гидробиологического мониторинга поверхностных вод суши ФГБУ «ИГКЭ», проведены экспериментальные исследования проб макрозообентоса. В экспериментальных работах участвовали ФГБУ «Дальневосточное УГМС», Северо-Западное УГМС (Петрозаводский ЦГМС) и «Северо-Кавказское УГМС» (Астраханский ЦГМС). В связи с отсутствием дополнительного финансирования Забайкальское и Иркутское УГМС не смогли принять участие. Проведение отборов и обработки проб осуществлено в августесентябре 2017 г. Пробы отбирали в 3-х повторностях на глубинах 0,5; 1,0 и 3,0 м и после консервации в лабораториях УГМС пересылались в отдел гидробиологического мониторинга поверхностных вод ФГБУ «ИГКЭ Росгидромета и РАН» для экспертного анализа.

Результаты проведенных работ позволили более полно выявить видовой состав макрозообентоса, провести внешний контроль качества данных, получаемых в лабораториях УГМС. Эффективность определения фауны макрозообенса определяли методом сравнения данных обработки поступивших в отдел проб с качественным составом донных беспозвоночных, идентифицированных в 2017 году в КПОП, поступивших из ЦГМС в отчетном году. Сходство перечней видов, полученных от сотрудников лабораторий, принявших участие в интеркалибрации и полученных экспертом в результате обработки, определяли при помощи Коэффициента Серенсена-Чекановского в процентном соотношении.

При проведении интеркалибрации основное внимание направлено на правильность определения видов бентосных беспозвоночных с точностью, необходимой для выявления индикаторных видов и групп Вудивисса, так как это непосредственно влияет на конечный результат по определению класса

качества воды в соответствии с РД 52.24.309-2016 «Организация и проведение режимных наблюдений за состоянием и загрязнением поверхностных вод суши». Объектами наблюдения послужили Петрозаводская губа Онежского озера, река Волга рукав Ахтуба пгт. Селитринное, река Амур, г. Комсомольск на Амуре, включенные в программы мониторинга каждого из участников испытаний.

Оценка осуществлялась по следующим параметрам:

- 1. определение качества поверхностных вод по биотическому индексу Вудивисса;
- 2. правильность определения качественного состава макрозообентоса выделения и определения индикаторных видов для определения групп Вудивисса.

Результаты

В таблице 15 представлены полученные оценки класса качества вод по водным объектам и глубинам отбора проб экспертами ФГБУ «ИГКЭ Росгидромета и РАН» и лабораториями УГМС. Из таблицы 15 следует, что оценка класса качества в лабораториях, принявших участие в интеркалибрации, существенно занижена в рукаве Ахтуба (Астраханский ЦГМС), не производена на р. Амур, а также не производится в зоне, отражающей действительное состояние экосистемы и класса качества воды в Карельском ЦГМС.

Таблица 15 Материал и оценка класса качества воды водных объектов по биотическому индексу Вудивисса

онотическому индексу Будивиеса												
Водный			глубина, м (дночерпатель)									
объект	Месяц	0,5 м			1 м			3 м			скребок	
	Октябрь	2	4	4	2	2	4	3	4	4	3	4
p.	Ноябрь	2	4	4	5	4	4	5	4	4	4	4
Ахтуба	ЦГМС	4	3	5	4	5	5	-	-	-	-	-
	Август	5		5		3		-	-			
	Сентябрь	3			4		4		-	-		
	Ноябрь	4			4		4		-	-		
р. Амур	УГМС	н/о				н/о		н/о		-	-	
Петроза	Август	1				1		3		-	-	
водская	Сентябрь	1		1		2		-	-			
губа												
Онежско		Нет	`		Нет							
е оз.	ЦГМС	наблюдений			наблюдений				4	5	-	_

Причины постоянного занижения и/или отсутствия оценки качества вод кроются в погрешностях при анализе видового состава макрозообентоса в участвующих лабораториях УГМС Росгидромета.

Так, общее количество видов макрозообентоса, встреченных **Астраханским ЦГМС в р.Волга, рук. Ахтуба, пгт. Селитринное в 2017** г –

Таблица 16

Перечни видов макрозообентоса встреченных в р.Волга, рук. Ахтуба, пгт. Селитринное в 2017 г

	D	Виды, встреченные в 2017 г
	Виды в пробах эксперимента	сотрудниками лаборатории
1	2	3
	Oligochaeta	
	Naididae	
1	Aulodrilus pluriseta (Piquet 1906)	
2	Nais barbata Müller 1773	Nais communis
3	Nais pardalis Piguet 1906	Nais pseudobtusa
4	Stylaria lacustris (Linnaeus 1767)	
	Tubificidae	<u> </u>
5	Limnodrilus sp.	
6	Limnodrilus claparedeanus Ratzel 1868	
7	Psammoryctides albicola (Michaelsen 1901)	
8	Psammoryctides barbatus (Grube 1861)	
9	Tubifex newaensis Michaelsen 1905	Tubifex tubifex
10	Hirudinea Piscicola geometra (Linnaeus 1761)	Piscicola geometra
10	Mollusca	Fiscicola geometra
11	Viviparus contectus (Millet 1813)	
12	Viviparus viviparus Linnaeus 1758	
12	Bivalvia	
13	Dreissena polymorpha (Pallas 1771)	
14	Unio crussus nanus Philipsson 1788	
15	Unio tumidus Philipsson 1788	
13	Artropoda	
	Crustacea	
	Amphipoda	
16	Pontogammarus abbreviatus (Sars G.O. 1894)	Niphargoides abbreviatus
10	Myzidacea	Tripital gottles abovertains
17	Mysis relicta Lovén 1862	Limnomysis benedeni
17	Insecta	Zimioniysis venedeni
	Diptera	
	Chironomidae	
18	Chironomus гр plumosus (Linné 1758)	Chironomus plumosus
19	Cladotanytarsus mancus (Walker, 1856)	Chironomus sp.
20	Cricotopus sylvestris Fabricius 1794	sp.
21	Cryptochironomus defectus (Kieffer1913)	
22	Glyptotendipes paripes Edwards 1929	
23	Polypedilum nubeculosum (Meigen 1804)	
24	Stictochironomus rosenscholdi (Zetterstedt 1838)	
	Limoniidae	1
25	Antocha vitripennis (Meigen 1830)	
	Ceratopogonidae	1
L	Corniopogomune	

1	2	3
26	Clinohelea unimaculata (Macquart,1826)	
	Trichop	tera
27	Ecnomus tenellus (Rambur 1842)	
28	Hydropsyche ornatula McLachlan 1878	
	Heterop	tera
29	Micronecta Kirkaldy 1897	
	Nemato	oda
30	Nematoda gen. sp.	Nematoda gen.sp

составило **8** видов и групп видов. В материале, полученном экспертом (август-октябрь 2017 г.) в период максимального вылета имаго амфибиотических беспозвоночных встречено **29** видов и форм (таблица 16). Сходство генерализированных списков видов составило **12%**.

Таким образом, отмечается явное занижение численности видов (возможно, вследствие недостаточной внимательности гидробиолога **Астраханского ЦГМС**) и, соответственно, количества групп Вудивисса, что и является основной причиной занижения класса качества вод.

Дальневосточное УГМС в р. Амур в створе Комсомольск на Амуре в 2017 г не определили ни одного вида в составе макрозообентоса и, соответственно, не оценивали класс качества воды. В карточках первичной обработки проб макрозообентосу Дальневосточным УГМС зарегистрировано – 4 группы донных беспозвоночных. В материале, полученном экспертом (август-октябрь 2017 г.) встречено 11 видов и форм (таблица 17). Сходство генерализированных списков видов составило 0%. В карточках первичной обработки макрозообентоса не выделены группы Вудивисса. Выделение групп Вудивисса предполагает точную пробе идентификацию видового состава В каждой таких беспозвоночных как: Chironomidae, Oligochaeta, Plecoptera, Trichoptera, Ephemeroptera, Amphipoda, Isopoda, Gastropoda, Bivalvia, согласно методике 52.24.309-2016 регламентированной ΡД (Руководство гидробиологическому мониторингу пресноводных экосистем. 1992. / под ред. проф. В.А. Абакумова. Л., Гидрометеоиздат). Отсутствие идентифицированных видов является основной причиной занижения оценки класса качества вод.

Количество видов макрозообентоса, встреченных **Карельским ЦГМС** в **Петрозаводской губе Онежского озера** в 2017 г – составило **14 видов** и групп видов. В материале, полученном экспертом (август-октябрь 2017 г.) встречено **12 видов** и форм (таблица 18). Сходство генерализированных списков видов составило **8%**. Как и в предыдущих случаях, отмечается более низкая оценка класса качества. Кроме того, неверно используется в качестве видового названия «Genus sp.», требуется уточнение, к какой группе донных организмов относится группа видов неопределенного рода. Кроме того,

Таблица 17

Перечни видов макрозообентоса, встреченных в р. Амур в створе г. Комсомольск на Амуре в 2017 г.

No	Виды в пробах эксперимента	Виды, встреченные в 2017 г сотрудниками лаборатории				
	Oligochaeta	Oligochaeta gen.sp.				
	Naididae					
1	Aulodrilus limnobius Betscher 1899					
2	Aulodrilus pluriseta (Piquet 1906)					
	Tubificidae					
3	Limnodrilus sp.					
4	Limnodrilus hoffmeisteri Claparède 1862					
5	Potamothrix hammoniensis (Michaelsen 1901)					
6	Bothrrioneurum vejdovskyanum Štolc 1888					
	Mollusca					
	Gastropoda	Gastropoda gen.sp.				
7	Agapetus fuscipes McLachlan 1884					
8	Amuropaludina pachya (Bourguignat 1860)					
	Insecta Diptera					
	Chironomidae	Chironomidae gen.sp.				
9	Glyptotendipes paripes Edwards 1929					
10	Polypedilum nubeculosum (Meigen 1804)					
	Ephemeroptera					
11	Epeorus curvatulus Matsumura 1931					
12		Nematoda gen.sp.				

используется устаревшее название *Peloscolex ferrox* = *Spirosperma ferox* (Eisen 1879), *Pontoporeyia affinis* =*Monoporeia affinis* (Lindström, 1855). Обнаружение дождевого червя *Eiseniella tetraedra* в открытой части Петрозаводской губы также сомнительно, учитывая отсутствие указанного вида в прибрежной полосе.

Каждая лаборатория из участвовавших в интеркалибрации ЦГМС традиционно отмечает в материалах по макрозообентосу представителей типа Nematoda, однако, диапазон длин подавляющего числа свободноживущих видов этой группы лежит от 80 мкм до 380 мкм, что автоматически исключает их из состава макрозообентоса, в связи с тем, что основная масса (более 90%), как по численности, так и по биомассе теряется при промывке и разборе материала, т.к. тип Nematoda в большинстве своем интерстициальные животные мейобентоса, ДЛЯ которого существуют специфические методы исследований

 Таблица 18

 Перечни видов макрозообентоса, встреченных в Петрозаводской губе

 Онежского озера в 2017 г.

№	Виды в пробах эксперимента	Виды, встреченные в 2017 г сотрудниками лаборатории							
312	Oligochaeta								
1		Genus sp.? Oligochaeta gen. sp.							
	Naididae	1 0 0 1							
2		Slavina appendiculata							
	Tubificidae	**							
3	Spirosperma ferox (Eisen 1879)	Peloscolex fer r ox							
4		Tubifex tubifex							
5	Potamothrix hammoniensis (Michaelsen 1901)								
6	Psammoryctides barbatus (Grube 1861)								
7	Isochaetides michaelseni (Lastočkin 1936)								
	Enchytra	aeidae							
8		Eiseniella tetraedra							
9	Stylodrilus heringianus Claparede, 1862								
	Mollu	isca							
	Bivalvia								
10	Pisidium amnicum (O.F. Müller 1774)	Pisidium sp.							
11	Sinanodonta woodiana (Lea 1834)								
	Artrop	ooda							
	Crusta	acea							
	Amphi								
12		Pontoporeyia affinis? Monoporeia affinis (Lindström, 1855)							
13	Gmelinoides fasciatus (Stebbing, 1899)								
	Insecta I	Diptera							
	Chirono	midae							
14	Procladius ferrugineus Kieffer, 1919								
15		Prodiamesa bathyphila							
16		Prodiamesa olivacea							
17		Psectrocladius gr. psilopterus							
18		Sindiamesa nivosa							
19		Ablabesmia lentiginosa							
20	Stictochironomus rosenscholdi (Zetterstedt 1838)								
21		Cricotopus gr. silvestris							
22	Cryptochironomus vulneratus Zetterstedt 1838								
23		Anatopynia plumipes							
	Plecop	tera							
24	Isoperla grammatica (Poda 1761)								

Проведение эксперимента позволило сделать следующие выводы:

1. данные всех 3-х лабораторий Росгидромета, участвовавших в испытаниях не соответствуют предъявленным требованиям, так как в

каждой из обследованных лабораториях отмечаются значительные недостатки в части внимательности разбора проб и точности определения видового состава макрозообентоса, что приводит к занижению видового разнообразия и оценок качества поверхностных вод, либо к невозможности проведения оценки;

- 2. осенний отбор проб для анализа зообентоса не должен проводиться подразделениями позже конца октября на мелководьях водных объектов до глубины 1 м. Дальнейшие наблюдения в мелководной зоне не эффективны и приводят к ошибке метода в связи с сезонной миграцией донных беспозвоночных в более глубокие слои на зимовку;
- 3. лаборатории в карточках видов указывали как отдельную группу нематоды, в том время, как нематоды имеются в каждой пробе, и при расчете БИ они не учитываются.

По результатам экспериментальных оценок рекомендуется следующее.

- 1. Всем УГМС Росгидромета, осуществляющим наблюдения за качеством поверхностных вод по показателям макрозообентоса обратить внимание бентологов на необходимость тщательного определения каждой пробы до вида.
 - 2. Лабораториям, принявшим участие в эксперименте:
- обратить повышенное внимание на правильности определения видов согласно приведенного в таблицах 16-18 списка видов;
- в карточках видов не указывать нематод как отдельную группу Вудивисса нематоды и при расчете БИ не учитывают.
- 3. Карельскому ЦГМС Северо-Западного УГМС при проведении наблюдений за показателями качества воды в Петрозаводской губе Онежского озера необходимо сместить зону наблюдений из открытой части в прибрежную зону, т.к. именно в этой зоне обитает наиболее широкий спектр видов индикаторов. В программу наблюдений на 2018 и последующие годы внести соответствующие изменения. Отборы проб фито и зоопланктона оставить без изменений. Для определения проб зообентоса рекомендуется за основу определений и систематики использовать «Определитель пресноводных беспозвоночных России» под ред. С.Я. Цалолихина (Т.1-6, 1994-2004).

Качество данных, поступивших в карточках первичной обработки На основании полученных научно-методическим центром ФГБУ «ИГКЭ» карточек первичной обработки проб макрозообентоса в 2017 году выявлены следующие нарушения:

Данные, полученные из 6 (55%) лабораторий сети, производящих мониторинг по этому показателю (Мурманское, Забайкальское, Иркутское, Приволжское, Дальневосточное, Северо-Кавказское (Ростовский ЦГМС) УГМС, а также Петрозаводское ЦГМС Санкт-Петербургского УГМС не были приняты и использованы отделом гидробиологического мониторинга

поверхностных вод суши ИГКЭ для дальнейшей работы в связи с тем, что выполненные наблюдения не соответствуют требованиям методик, изложенным в:

- 1. Руководство по гидробиологическому мониторингу пресноводных экосистем / под ред. В.А. Абакумова. СПб: Гидрометеоиздат. 1992. С. 89-90.
- 2. Обзор состояния работ на сети наблюдений за загрязнением поверхностных вод России по гидробиологическим показателям в 2016 году.-М:ИГКЭ. С.21. п.2.

Так, в отчетных документах каждого из выше перечисленных УГМС не выделены группы Вудивисса, а также не определен видовой состав донных сообществ макрозообентоса для оценки состояния экосистем согласно экологических модификаций, метолов предполагает что точную идентификацию видового состава каждой пробе таких беспозвоночных, как: Chironomidae, Oligochaeta, Plecoptera, Trichoptera, Ephemeroptera, Amphipoda, Isopoda, Gastropoda, Bivalvia. Полученные данные не могут быть использованы ни для оценки класса качества воды по показателю макрозообентос, ни для оценки экологических модификаций экосистем.

VIII. ВЫВОДЫ

- 1. В 2017 году, как и в предыдущие 3-и года, наиболее развитая сеть пунктов гидробиологических наблюдений функционировала в Мурманском, Дальневосточном, Иркутском, Северо-Кавказском и Приволжском УГМС.
- 2. В последние несколько лет наметилась устойчивая тенденция сокращения объемов проведенных сетью подразделений всех показателей, так, в 2014 г они составляли 4578, в 2015 3743 в 2016 году –3530, отчетном 2017 году 4019, связанные с сокращением государственного финансирования и проявлением несоответствия между включением работ в Программу наблюдений и реальным выполнением измерений. Дальневосточное и Иркутское УГМС, напротив, увеличили как количество наблюдений, так и количество наблюдаемых параметров.
- 3. По-прежнему, мониторингом затронуты преимущественно слабо загрязненные участки водных объектов, на которые приходится 63% всех пунктов наблюдения. Недостаточно охвачены водные объекты в крупных городах с населением более 500 тыс. жителей. Почти не ведутся наблюдения в пунктах с естественными экологическими системами, расположенных на особо охраняемых природных территориях федерального значения. Их доля от всех пунктов категории 4 составляет менее 5%.
- 4. Наибольшая обеспеченность створами характерна для крупных рек России: Волга (включая каскад Волжских водохранилищ), Амур, Дон, Енисей (с Ангарой) и оз. Селенга.
- 5. С наибольшей частотой используются три основных показателя состояния экосистем поверхностных вод: зообентос, фитопланктон и зоопланктон. Наиболее полно проводится характеристика водных экосистем (4 и более показателей) в Дальневосточном, Приволжском и Иркутском УГМС.
- 6. Программа работ по структурным показателям сети в 2018 году практически не претерпела изменений. В 11 подразделениях работы выполнялись по утвержденной программе.
- 7. В общем балансе объем работ на гидробиологической сети в 2018 году снизится ещё на 10% от уровня 2017 года, преимущественно за счет сокращения наблюдений в Мурманском и Северо-Западном УГМС.

ІХ. РЕКОМЕНДАЦИИ

Анализ и оценка информации о выполнении работ в 2014-2017 годах, поступившим данным, ОТ УГМС проведенные ПО говорят 0 явно нарастающей тенденции сокращения наблюдений за загрязнением поверхностных вод по гидробиологическим показателям.

В целях повышения информационной эффективности наблюдений в условиях снижения базового финансирования при подготовке программ наблюдения качества поверхностных вод по гидробиологическим показателям на 2019 год рекомендуется сохранить обеспеченность створами крупных водных объектов, указанных в таблице 1, на уровне не ниже 2015 года. Не прекращать наблюдения в особо важных пунктах (города, фоновые створы, зоны экологического неблагополучия, трансграничные объекты) и водных объектах на сети наблюдения, указанных в Обзорах 2014 и 2015 гг.

Для наиболее полного гидробиологического анализа состояния водных экосистем и оценки класса качества вод наблюдаемых водных объектов необходимо максимально полно использовать основные гидробиологические показатели. При определении класса качества воды необходимо полное определение видового состава фитопланктона, зоопланктона, перифитона и зообентоса с точностью до вида или групп видов. Определение до групп Вудивисса подразумевает точную идентификацию видовой структуры каждой пробы в группах: Chironomidae, Oligochaeta, Plecoptera, Trichoptera, Ephemeroptera, Amphipoda, Isopoda, Gastropoda, Bivalvia. Кроме того, ввиду того, что в регионах северных УГМС (Тиксинский, Мурманский, Северо-Западный). восточных УГМС (Средне-Сибирский также Дальневосточный) отсутствуют группы Вудивисса или не соответствуют прописанным группировкам видов-индикаторов, для оценки класса качества воды необходимо использовать Индекс сапробности, что в свою очередь максимально точного определение видовой адекватной оценки состояния сообществ, как по количественным, так и по качественным структурным компонентам. Видовой состав указывается в соответствие, с общепринятой номенклатурой Род вид автор, год

Индикаторная значимость (сапробная валентность) — указывается в числовом обозначении, по СЭВ (1977) для уточнения современного значения можно использовать электронный ресурс: http://ecograde.bio.msu.ru/db/description/classes.html либо по источникам, принятым в регионе, при отсутствии информации.

При составлении программ наблюдений и организации работ целесообразно всем гидробиологическим лабораториям в составе УГМС своевременно направлять свои предложения для подготовки общей программы работ от УГМС на последующий год. При подготовке Программы учитывать реальные возможности выполнения всего комплекса

наблюдений, обеспечивающего необходимую и достаточную полноту гидробиологической информации.

Обращаем внимание на важность оценки качества воды по показателям состояния перифитона. В настоящее время его используют только 3 лаборатории, при том, что мониторинг водотоков превышает лимнические наблюдения более чем в 2 раза и имеется в программах каждого из УГМС.

КПО должны ежегодно пересылаться в ИГКЭ согласно приказу Росгидромета №156 от 31.10.2000 в течении 45 суток со дня отбора, а также базе электронном формате В данных предусматривающее дублирование данных на магнитных носителях.

В 3 подразделениях из 11: Приволжское, Якутское и УГМС Республики Татарстан КПО не переведены в унифицированный формат.

Учитывая наличие материальной базы и значительного объема проведённых ранее работ, многолетнюю непрерывность рядов данных считаем необходимым в Северном и Приморском УГМС принять меры по восстановлению гидробиологических наблюдений.

Заведующий отделом гидробиологического мониторинга поверхностных вод, к.б.н.

e-mail: oleg.potyutko@igce.ru

О.М. Потютко