

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Датчик видимости FS11

M211187RU-A

ОПУБЛИКОВАНО

Vaisala Oyj P.O. Box 26 FI-00421 Хельсинки Финляндия Тел. (международный): Факс: +358 9 8949 1 +358 9 8949 2227

Посетите наши интернет-страницы по адресу http://www.vaisala.com/.

© Vaisala 2010

Запрещается копирование любой части данного руководства в любой форме, электронными или механическими средствами (включая снятие фотокопий), а также передача содержимого третьим сторонам без письменного разрешения обладателя авторского права.

Содержание документа может меняться без предварительного уведомления.

Настоящее руководство не накладывает на компанию Vaisala каких-либо юридически значимых обязательств по отношению к заказчику либо к конечному пользователю. Все юридически значимые обязательства и соглашения представлены исключительно в тексте соответствующего контракта или договора о поставке.

Содержание

ОБЩИЕ СВЕДЕНИЯ	
О настоящем руководстве Версия документа	•
Условные обозначения))))
Требования безопасности при работе с изделием 10 Защита от электростатических разрядов (ЭСР)) 3
Утилизация13	3
Соответствие нормативным документам 14	1
Товарные знаки14	1
Лицензионное соглашение15	5
Гарантия15	5
ГЛАВА 2	
ОБЗОР ИЗДЕЛИЯ 17	7
Описание и назначение17	7
Механическая структура18	3
Комплектность19)
ГЛАВА 3	
УСТАНОВКА	I
Подготовка к установке21	I
Расположение и ориентация 22	2
Выгрузка и распаковка24	1
Распаковка24	1
Информация о хранении24	ł
Заземление оборудования и защита от молний	5
Выбор кабелей27	1
Кабель питания	/ 2
	,
Процедура установки	1
Монтаж при заливке бетонной подушки	2
Монтаж на существующей поверхности	1
	5
Сборка FS11 35	
Сборка FS1135 Вставка батареи при наличии дополнительного аккумулятора FSB101 46	3
Сборка FS11	3
Сборка FS11	3
Сборка FS11	539
Сборка FS11	53912
Сборка FS11	53912

Последовательная многоточечная передача через	- 4
RS-485	54
Модем DMX501 (опция)	56
Многоточечное модемное подключение	59
Подключение сервисного терминала	59
Дополнительные датчики яркости фона	01
	.01
	.01
Записи	64
Начальные установки	65
ГЛАВА 4	
РАБОТА	67
Команды FS11	67
Включение и выключение командного режима	67
Команда OPEN	68
Команда CLOSE	69
Возможные команды	69
Завершение команды	77
Настройка количества строк, отображаемых на экран	Э
терминала	78
Запрос команды	78
Форматы сообщений	79
Команда MESSAGE	80
Сообщение 1, FS11	80
Коды аварийного статуса	82
Сообщение 2, FS11 с LM21	83
Сообщение 3, сообщение о статусе	84
Сообщение 4, нескомпенсированные значения	87
Сообщение 5, стандарт системы Vaisala	89
Эмуляция FD12	89
FD12 сообщение 2	90
FD12P сообщение /	91
Эмуляция MITRAS	92
Одноразовый вариант МПКАS	92
двухоазовый вариант MITRAS	94
Режимы передачи сообщений	95
Автоматический режим	95
Подтверждение АСК/NAK	96
Режим запроса	97
Вторичное сообщение	98
Конфигурация системы	99
Заводские настройки	100
Дополнительные внешние датчики	100
Датчик яркости фона LM21	100
датчик день/ночь	101
Имитация тестовых сообщений	101
Фиксированные тестовые сообщения	102
Ручное сообщение имитации	103
Работа с LM21 через сервисный порт	104
Коммуникационные параметры	
последовательного интерфейса	104
Последовательная передача в формате RS-232	104
Вход в командный режим и выход из него	105
Команда OPEN	105

Команда CLOSE 106
Доступные команды106
Настройка параметров 109
Заводские значения параметров системы FS11 110
Стандартная инициализация LM21110
ПРИНЦИП ДЕИСТВИЯ 111
Описание аппаратной части 113
Измерительный блок FSM102 113
Модуль передатчика FST102 113
Приемный модуль FSR102 115
Плата контроллера FSC102 117
Интерфейсный блок FSI102 117
Плата коммуникационного контроллера FSC202 118
Источник питания (сеть переменного тока) 118
Резервный аккумулятор 120
Хрупкая мачта 120
Описание программного обеспечения 121
Порядок измерений121
Принцип измерения видимости 121
Расчеты
Внутренний мониторинг 122
Сообщения о статусе датчика ES11 123
Сообщения о событиях 1011
Сигналы тревоги 130
Контроль загрязненности и блокировки оптики 132
Компенсация загрязненности окон 133
Мониторинг сигнала 134
Стабильность интенсивности света перелатчика 134
Функционирование нагревателей 135
Источники питания 136
Аналоговые интерфейсы 136
Контроль памяти и работа программ 137
Мониторинг коммуникаций 138
Латчик яркости фона
Журнал ошибок

ОБСЛУЖИВАНИЕ	141
Очистка окон FSM102	141
Калибровка FS11	143
Калибровка видимости FSM102	143
Процедура проверки калибровки FSM102	144
Процедура калибровки FSM102	146
Процедура проверки механического выравние	вания
FSM102	147
Управляемая процедура калибровки FSM102	148
Оценка результатов управляемой процедуры	
калибровки измерительного блока	151
Калибровка выполнена успешно	151
Процедура калибровки завершена неудачн	но 154

Замена модулей FS11	156
Замена FSC102	157
Замена модуля передатчика (FST102) и модуля	
приемника (FSR102)	158
Замена предохранителей	164

ГЛАВА 7

ПОИСК И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ	165
Сообщения об ошибках	166
Ошибки	166
Тревоги	167
Предупреждения	169
Индикация	170
Другие неисправности	171
Техническая поддержка	174
Возврат продукта	174

ГЛАВА 8

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ		
Характеристики		
Рабочие характеристики		
Оптические характеристики		
Электрические характеристики		
Механические характеристики	177	
Климатические характеристики	177	
Электромагнитная совместимость	177	
Контрольная сумма CRC16	178	
УКАЗАТЕЛЬ	179	

Список иллюстраций

Рис. 1.	Система FS11	. 18
Рис. 2.	Рекомендуемое расположение датчика видимости ES11 с мачтой ESAM250/ESEM250	23
Puc 3	Заземпение оборудования ES11	26
Рис 4	Распределительная коробка	28
Рис 5	Запивка бетонного фундамента	. 20
ГИС. J. Вис. 6	Возрадоние фундамента	. J I 22
Рис. 0.	Возведение фундамента для ГЗТТ	. 33
РИС. 7.	Источарка манти ЕС11 а домани на мантажного	. 34
РИС. 8.	установка мачты FSTT с помощью монтажного комплекта FS211296	36
Puc 9	Монтаж кабеля заземления хоулкой мачты FS11	37
Рис 10	Установка апюминиевой мачты ES11 с помощью	. 07
1 10. 10.		38
Рис 11		30
Рис. 12	Монтаж задней панели радиационного экрана	30
ГИС. 12. Рис. 13	Понтаж задней нанели радиационного экрана	. 39
ГИС. 13. Duo 14	Паклон алюминиевой и хрупкой мачт	.40
РИС. 14.	Подключение измерительного олока	.41
Рис. 15.		. 42
РИС. 16.	Протяжка кабельного разъема с помощью веревки	. 42
Рис. 17.	Протяжка кабеля LM21	. 43
Рис. 18.	Монтаж LM21	. 43
Рис. 19.	Установка корпуса интерфейсного блока	. 44
Рис. 20.	Сборка плеча датчика	. 45
Рис. 21.	Монтаж радиационного экрана	. 46
Рис. 22.	Резервная батарея без крышки	. 47
Рис. 23.	Кабель корпуса интерфейсного блока	. 48
Рис. 24.	Принцип прокладки кабелей	. 51
Рис. 25.	Инструкция по заземлению кабеля	. 52
Рис. 26.	Вариант связи по протоколу RS-232	. 54
Рис. 27.	Связь в стандарте RS-485	. 55
Рис. 28.	Применение RS-485	. 56
Рис. 29.	Подключение модемного кабеля	. 57
Рис. 30.	Установка модема DMX501	. 58
Рис. 31.	Местоположение внешних разъемов для подключения	
	сервисного кабеля	60
Рис 32	Полкпючение фотопереключателя день/ночь	62
Рис. 33	Схема прокладки кабелей при полключении	
1 1101 001		63
Рис 34	Включение блока	64
Рис 35	Блок-суема патцика FS11	112
Рис 36		11/
Гис. 30. Рис. 37		4
ГИС. 57.	принцип измерения загрязненности окна передатчика и	115
Duc 38		116
Рис. 30.		127
Рис. 39. Вис. 40	Гасположение датчика температуры поверхности	1 / /
РИС. 40. Вис. 41	Установка заглушек	144
РИС. 41.	Соорка и установка калиоратора	140
ГИС. 42. Duo 42	Установка шаолонных пластин на матовые стекла	140 157
Рис. 43.	контроллер настига датчика видимости	157
Рис. 44.	вид снизу на датчик видимости: винты, закрепляющие	
D /-	крышку центрального отсека	157
Рис. 45.	Контрольные кабели передатчика и приемника датчика	. = -
	видимости	158
Рис. 46.	Снятие концевой заглушки (показано для передатчика)	159

Рис. 47.	Снятие стопорного кольца модуля (показано для передатчика)	159
Рис. 48.	Выталкивание контрольного кабеля в оптическую	
	головку	160
Рис. 49.	Модуль передатчика/приемника, контрольный кабель	
	отсоединен	160
Рис. 50.	Вытягивание контрольного кабеля из трубы корпуса	161
Рис. 51.	Уплотнительное кольцо модуля передатчика/приемника	161
Рис. 52.	Концевая заглушка с уплотнительным кольцом	163
Рис. 53.	Расположение предохранителей на плате FSP103	164

Список таблиц

Табл. 1.	Пересмотры руководства	9
Табл. 2.	Вспомогательные руководства	9
Табл. 3.	Основная комплектация изделий FS11	19
Табл. 4.	Дополнительная комплектация изделий FS11	20
Табл. 5.	Рекомендуемые принадлежности к FS11	20
Табл. 6.	Выбор кабеля питания переменного тока	29
Табл. 7.	Длины коммуникационных кабелей	52
Табл. 8.	Коммуникационные параметры, установленные по	
	умолчанию	66
Табл. 9.	Команды FS11 уровня пользователя	71
Табл. 10	Команды FS11 высокого уровня	73
Табл. 11.	Коды аварийного статуса	82
Табл. 12.	Заводские настройки системы	100
Табл. 13.	Команды LM21 уровня пользователя	106
Табл. 14.	Команды LM21 расширенного уровня	107
Табл. 15.	Значения по умолчанию параметров датчика LM21,	
	используемого в составе системы FS11	110
Табл. 16.	Сообщения о событиях измерительного блока	123
Табл. 17.	Сообщения о событиях интерфейсного блока	125
Табл. 18.	Сообщения о событиях датчика яркости фона	126
Табл. 19.	Сообщения об ошибках	130
Табл. 20.	Сигналы тревоги	130
Табл. 21.	Предупреждающие сообщения	131
Табл. 22.	Указательные сообщения	131
Табл. 23.	Успешное завершение управляемой процедуры	
	калибровки	152
Табл. 24.	Управляемая процедура калибровки, обновление	
	калибровки	153
Табл. 25.	Управляемая процедура калибровки, неудачный тест	
	рассеянного сигнала	154
Табл. 26.	Управляемая процедура калибровки, неудачный тест	
	нулевого сигнала	155
Табл. 27.	Сообщения об ошибках	166
Табл. 28.	Сигналы тревоги	167
Табл. 29.	Предупреждающие сообщения	169
Табл. 30.	Указательные сообщения	170
Табл. 31.	Другие неисправности	171
Табл. 32.	Рабочие характеристики FS11	175
Табл. 33.	Общие оптические характеристики FS11	175
Табл. 34.	Оптические характеристики передатчика FS11	176
Табл. 35.	Оптические характеристики приемника FS11	176
Табл. 36.	Электрические характеристики FS11	176
Табл. 37.	Механические характеристики FS11	177
Табл. 38.	Условия окружающей среды для FS11	177
Табл. 39.	Соответствие FS11 требованиям CE	177

Текущая страница специально оставлена пустой.

ГПАВА 1 ОБЩИЕ СВЕДЕНИЯ

В этой главе содержатся общие сведения о данном руководстве и изделии.

О настоящем руководстве

Руководство пользователя датчика видимости FS11 содержит информацию о транспортировке, установке и эксплуатации системы. Подробно описаны также операции по сборке и работы по техническому обслуживанию. Кроме того, с целью оказания помощи пользователю в поиске и устранении неисправностей, в руководство включены соответствующие инструкции и технические характеристики.

Версия документа

Габл. 1.	Пересмотры	руководства
----------	------------	-------------

Код руководства	Описание
M211187EN-A	Первое издание FS11 User's Guide (настоящее
	руководство).

Вспомогательные руководства

В зависимости от конфигурации системы Вам могут понадобиться дополнительные Руководства по эксплуатации датчиков, компьютеров, дисплеев и другого оборудования, входящего в состав системы. (Эти документы не включены в стандартный комплект поставки датчика FS11.)

Табл. 2. Вспомогательные руководства

Код руководства	Название руководства	
M211107EN	FS11P Руководство по эксплуатации	
M210310EN ТЕRMBOX 1200 Терминальная коробка,		
	Руководство по эксплуатации	
M210374EN	QBR101 Руководство по эксплуатации	
M210283EN	LM21 Руководство по эксплуатации	

Условные обозначения

В настоящем руководстве важная информация по безопасности помечена следующим образом:

ВНИМАНИЕ	Слово «Внимание» предупреждает о серьезной опасности. Во
	избежание риска травм или летального исхода необходимо
	внимательно прочесть указания и следовать им.

ОСТОРОЖНО Слово «Осторожно» предупреждает о потенциальной опасности.
Во избежание выхода изделия из строя или потери ценной
информации необходимо внимательно прочесть указания и
следовать им.

ВАЖНО	Слово «Важно» указывает на важную информацию по
	использованию изделия.

Требования безопасности при работе с изделием

Перечисленные ниже меры предосторожности должны соблюдаться на всех этапах эксплуатации и обслуживания описываемого изделия. Невыполнение этих мер или игнорирование специфических предупреждений, содержащихся далее в тексте данного руководства, противоречит стандартам безопасности проектирования, производства и надлежащего применения данного инструмента или оборудования. Компания Vaisala Oyj и ее дочерние компании не несут никакой ответственности за последствия невыполнения клиентом этих требований.

ВНИМАНИЕ Для минимизации опасности удара током необходимо надежно заземлить шасси датчика. Изделие оборудовано трехжильным кабелем питания переменного тока. Убедитесь, что заземляющий провод кабеля подключен к внешнему заземлению.

ВНИМАНИЕ	В нижней части кожуха интерфейсного блока датчика видимости
	имеется клемма заземления. Необходимо обеспечить качественное
	заземление с помощью кабеля сечением 16 мм ² . Это также является
	средством защиты датчика от наведенных напряжений, вызванных
	ударам молнии.

ВНИМАНИЕ	Во избежание увечья персонала, а также повреждения датчика
	правильные, прежде чем подключать питание. Так же убедитесь что обеспечено качественное заземление кабеля питания.

ВНИМАНИЕ	Не используйте оборудование во взрывоопасной обстановке,
	например, в присутствии легковоспламеняющихся газов или испарений. Использование любого электрического прибора в таких условиях представляет безусловную угрозу безопасности.

ВНИМАНИЕ	Ни при каких обстоятельствах не допускается работа с
	компонентами и устройствами, находящимися под напряжением,
	иначе как в присутствии другого лица, способного оказать первую
	медицинскую помощь

ВНИМАНИЕ	Обслуживающий персонал ни в коем случае не должен открывать корпус изделия. Любая замена компонентов или внутренняя настройка должна выполняться подготовленным квалифицированным персоналом. Не производите удаление или замену каких-либо компонентов оборудования при подсоединенном питающем кабеле. При некоторых обстоятельствах опасные
	питающем кабеле. При некоторых оостоятельствах опасные напряжения могут иметь место даже при отсоединенном питающем кабеле. Во избежание травм необходимо отсоединять питание и производить полную разрядку цепи прежде, чем касаться ее.

ОСТОРОЖНО Все компоненты платы, включая СМОЅ микросхемы должны транспортироваться и храниться в токопроводящей упаковке. Хотя новые СМОЅ устройства защищены от перенапряжения, которое может быть вызвано разрядом статического электричества, рекомендуется очень аккуратно обращаться с такими устройствами: обслуживающий персонал должен быть должным образом заземлен. Необходимо избегать излишнего контакта с компонентами платы.

ОСТОРОЖНО Во избежание возникновения дополнительной опасности, не изменяйте и не заменяйте самостоятельно отдельные детали оборудования. По всем вопросам, связанным с ремонтом оборудования обращайтесь в фирму Vaisala или к ее официальным представителям.

ПОСТАНОВЛЕНИЕ О РАДИОЧАСТОТНЫХ ПОМЕХАХ (США)

Федеральная комиссия по связи (США) (в документе 47 CFR 15.838) постановила, что при использовании данного типа оборудования на территории США должны быть приняты во внимание следующие положения:

Постановление Федеральной комиссии по связи о радиочастотных помехах

Данное оборудование излучает и поглощает радиочастотные волны. Если оборудование установлено или эксплуатируется неправильно, т.е не в строгом соответствии с инструкциями производителя, оно может явиться источником помех, влияющим на прием сигналов радио и телевидения. Конструкция датчика видимости обеспечивает защиту от таких помех при установке в аэропортах. Однако, при установке в других местах нет гарантии, что датчик не станет источником помех. Если датчик все-таки станет источником помех, влияющих на нормальное радио- и телевещания, пользователю придется принять ряд мер по устранению помех:

- переориентировать приёмную антенну
- изменить местоположение датчика по отношению к приемнику
- убрать датчик от приемника

При необходимости обратитесь к поставщику оборудования или проконсультируйтесь с опытными специалистами по вопросам приема радио и телевизионных сигналов.

Защита от электростатических разрядов (ЭСР)

Электростатический разряд (ЭСР) может привести к мгновенному или отложенному выходу электронных схем из строя. Изделия компании Vaisala достаточно защищены от ЭСР при условии их надлежащего применения. Однако изделие можно повредить электростатическим разрядом при прикосновении, а также снятии или установке любых объектов внутри корпусов оборудования.

Чтобы самому не стать источником высоковольтного электростатического разряда, соблюдайте следующие меры предосторожности:

- Работайте с чувствительными к ЭСР деталями на надежно заземленном и защищенном от ЭСР рабочем месте. Если это невозможно, перед прикосновением к печатным платам заземлите себя на шасси оборудования. Заземление выполняется браслетом на запястье и электрическим проводом нужного сопротивления. Если оба варианта недоступны, перед прикосновением к печатным платам возьмитесь другой рукой за токопроводящую деталь шасси оборудования.
- Всегда берите печатные платы только за края. Запрещается прикасаться к контактам плат.

Утилизация

Соответствие нормативным документам

Прибор FS11 (с датчиком LM21 или без него) соответствует следующим директивам и стандартам:

- Директива по низковольтному оборудованию (2006/95/ЕС)
- EMC-директива 2004/108/EC)
- EN 60950-1: 2006 + А11:2009 Информационно-технологическое оборудование безопасность часть 1: Общие требования
- UL 60950-1:2007 (2-е издание) и национальные особенности для США и Канады.
- EN61326-1: 2006-04 Электрическое оборудование для измерения, контроля и лабораторного использования требования EMC для использования на промышленных территориях.
- EN 55022:2006 + Am 1:2007 to EN55022:2006 Class B. Информационно-технологическое оборудование – Характеристики радиопомех – Ограничения и способы измерения.
- EN 61000-3-2 (2006) Ограничения на излучения гармонического тока
- EN 61000-3-3 (2008) Ограничение изменений, флуктуаций и пульсаций напряжения в коммунальных низковольтных системах энергоснабжения

Товарные знаки

RAINCAP® является зарегистрированным товарным знаком компании Vaisala Oyj.

Microsoft[®] — зарегистрированный товарный знак Microsoft Corporation в США и/или других странах.

Лицензионное соглашение

Все права на любое программное обеспечение принадлежат компании Vaisala или третьим сторонам. Заказчику разрешено использовать данное программное обеспечение только в рамках соответствующего договора поставки или лицензионного соглашения по программному обеспечению.

Гарантия

На некоторые продукты компания Vaisala обычно выдает ограниченную гарантию сроком на один год. Для получения дополнительной информации о сроках и условиях нашей стандартной гарантии посетите наши Интернет-страницы по адресу: www.vaisala.com/services/warranty.html.

Имейте в виду, что любая подобная гарантия может оказаться недействительной в случае повреждений, возникших за счет естественного износа, вызванных исключительными условиями эксплуатации, обусловленных ненадлежащей установкой или обслуживанием либо связанных с несанкционированными изменениями. Подробная информация о гарантиях на каждый продукт содержится в соответствующем контракте или договоре о поставке. Текущая страница специально оставлена пустой.

глава 2 ОБЗОР ИЗДЕЛИЯ

Описание и назначение

FS11 – это интеллектуальный датчик видимости для автоматических систем наблюдения за погодой. Измерение видимости специально предназначено для приложений, связанных с определением дальности видимости на взлетно-посадочной полосе (RVR), но возможно также измерение метеорологической оптической дальности (MOR) до 75 км. Если прибор оборудован датчиком яркости фона, он может измерять фоновую освещенность.

Прибор можно использовать в помощь наблюдателю в полуавтоматической системе наблюдения за погодой. Прибор пригоден также для других систем наблюдения за погодой, он предоставляет ценную информацию, например, для аэропортов, дорожных и портовых служб.

Для функционирования датчика FS11 необходим источник питания напряжением 115/230 В переменного тока, а также линии связи, использующие интерфейсы RS-232 или RS-485, либо модемная линия связи. Сообщения, содержащие данные о видимости и статусе датчика, могут передаваться как на удаленный дисплей, так и в систему обработки данных.

В системе предусмотрен набор команд и тестирующих процедур для конфигурации и мониторинга различных функций датчика FS11. При сборке и установке датчика необходимо пользоваться терминальным монитором для проверки и изменения значений параметров системы.

Механическая структура

Рис. 1. Система FS11

К Рис. 1. относятся следующие цифровые обозначения:

- 1 = Измерительный блок FSM102
- 2 = Интерфейсный блок FSI102
- 3 = Мачта
- 4 = Датчик яркости фона LM21 (дополнительно)
- 5 = Заградительный огонь FS11OBS (дополнительно)

Система измерения видимости FS11 состоит из трех основных частей (см. позиции 1–3 на **Рис. 1.**, на стр. 18):

- 1. Измерительный блок FSM102, состоящий из измерительного контроллера, оптических частей, передатчика, приемника и защитных козырьков, оборудованных встроенным обогревом.
- Интерфейсный блок FSI102, состоящий из коммуникационного контроллера, источника питания, дополнительной модемной платы и дополнительной резервной батареи.
- Хрупкая мачта, состоящая из основания для фиксации на фундаменте или другой ровной поверхности, а также крепления измерительного блока и корпуса интерфейсного блока.

Оптические системы передатчика и приемника FSM102 постоянно наклонены вниз и вовне для защиты от пыли, снега и дождя. Угол измерения рассеяния составляет 42°. Корпус интерфейсного блока, как правило, крепится на той же мачте, где установлен измерительный блок.

Табл. 3. Основная комплектация изделий FS11		
Код	Наименование	Описание
FSM102	Измерительный блок	Измерительный блок
FST102	Передатчик	
FSR102	Приемник	
FSC102	Измерительный	
	контроллер	
FSI102	Интерфейсный блок	Источник питания,
		интерфейсный блок
FSC202	Интерфейсный	
	контроллер	
FSP103	Источник питания	
FS45048	Кабель мачты	Для FSFM250
FSFM250	Хрупкая мачта и набор	Хрупкая композитная мачта
	для монтажа	(высота от земли до точки
		крепления измерительного
		блока составляет 2,5 м) с
		набором для монтажа и
		принадлежностями
FS211295	Мачта	Хрупкая мачта
FS211296	Набор для монтажа	Комплект для монтажа
		алюминиевой или хрупкой
		мачты на существующий или
		новый фундамент

Комплектность

Кол	Наимонование	Описание
КОД	Паименование	Описание
DMX501	модем	для связи на оольшом
		расстоянии (выделенная
1.1.40.4		линия)
LM21	Датчик яркости фона	Аксессуары в комплекте
	LM21 для FS11	
FSB101	Резервная батарея	Зарядное устройство QBR101
		И
		батарея 2 А-ч
FS110BS	Заградительный огонь	12 В пост. тока, 7 Вт
		заградительный огонь
DRW232138	Кронштейн для датчика	Кронштейн для LM21 и
		FS110BS
TERMBOX-	Распределительная	Распределительная коробка,
1200	коробка	сетевая розетка (перем. ток),
		сигнальные клеммы и
		усовершенствованная схема
		защиты от молний
FSAM250	Алюминиевая мачта и	Алюминиевая мачта (высота
	набор для монтажа	от земли до точки крепления
		измерительного блока
		составляет 2,5 м) с набором
		для монтажа и
		принадлежностями
FD1130	Мачта	Алюминиевая мачта
FS211296	Набор для монтажа	Комплект для монтажа
		алюминиевой или хрупкой
		мачты на существующий или
		новый фундамент
FSAM300	Алюминиевая мачта и	Алюминиевая мачта (высота
	набор для монтажа	от земли до точки крепления
		измерительного блока
		составляет 3 м) с набором
		для монтажа и
		принадлежностями
FD15030	Мачта	Алюминиевая мачта
FS211296	Набор для монтажа	Комплект для монтажа
		алюминиевой или хрупкой
		мачты на существующий или
		новый фундамент

Табл. 4. Дополнительная комплектация изделий FS11

11	l
	11

Код	Наименование	Описание	
FSA11	Набор для калибровки видимости	 Включает в себя: Устройства калибровки Кабель для технического обслуживания QMZ101 Специальные приспособления для установки и обслуживания 	
LMA21	Комплект для калибровки LM21 в полевых условиях	Устройство для калибровки LM21 в полевых условиях	

глава з **УСТАНОВКА**

Подготовка к установке

Перед установкой датчика видимости FS11 необходимо составить план, в соответствии с которым будет производиться установка. Ниже приведена примерная последовательность действий по установке датчика.

- 1. Подготовьте место для установки датчика:
 - выберите наиболее подходящее место;
 - сориентируйте датчик на местности.
- 2. Подготовьте кабели:
 - тип, длина и расположение кабеля заземления;
 - тип, длина и расположение кабеля питания;
 - тип, длина и расположение модемного/сигнального кабеля.
- 3. Закажите необходимые материалы и кабели
- 4. Выкопайте канавы для кабелей и яму для фундамента
- 5. Забетонируйте фундамент
- 6. Установите основание и мачту:
 - установите основание на бетонный блок и закрепите болтами;
 - с помощью уровня выровняйте основание мачты;
 - установите мачту на основание.
- 7. Подключите кабели:
 - заведите кабель питания (перем. ток) и сигнальный кабель в распределительную коробку или подготовьте их для прямого подключения к датчику.

- 8. Выполните окончательную установку:
 - установите интерфейсный и измерительный блоки датчика FS11 на мачту;
 - подключите кабель питания и сигнальный кабель датчика FS11;
 - подключите модемный/сигнальный кабель к компьютеру, дисплею и другим подобным устройствам.
- 9. Выполните тестовый запуск системы.

Расположение и ориентация

При выборе места расположения датчика видимости FS11 необходимо обратить внимание на следующие основные требования:

- 1. Датчик видимости FS11 должен быть расположен в таком месте, чтобы его измерения быль репрезентативными для окружающих погодных условий.
 - Датчик FS11 должен быть удален как минимум на 100 м от больших зданий и конструкций, излучающих тепловую энергию и/или препятствующих свободному падению дождевых капель. Также необходимо избегать попадания датчика в тень деревьев, поскольку это в значительной степени изменяет микроклимат.
- 2. Место расположения датчика должно быть свободным от препятствий и отражающих поверхностей, которые могли бы повлиять на оптические измерения, а также от любых явных источников загрязнения воздуха.
 - Рекомендуется расположить датчик таким образом, чтобы на луче прямой видимости между передатчиком FSM102 и приемником (см. Рис. 2. на стр. 23) не находилось никаких помех и препятствий. В случае если луч передатчика отражается от помехи или препятствия и принимается приемником, датчик будет показывать слишком низкое значение метеорологической дальности видимости, поскольку на фоне ложного отраженного сигнала не может быть распознан настоящий отраженный сигнал. Ложный сигнал можно выявить с помощью поворота измерительного блока датчика. Значение ложного сигнала будет изменяться в зависимости от ориентации измерительного блока, соответственно будет изменяться и значение видимости.

Рис. 2. Рекомендуемое расположение датчика видимости FS11 с мачтой FSAM250/FSFM250

- Оптические элементы приемника и передатчика не должны быть направлены в сторону мощных источников света или – при ярком дневном свете – в сторону отражающих поверхностей, таких как водные поверхности. Рекомендуется направлять приемник на север в северном полушарии и на юг – в южном. (Передатчик и приемник можно различить по расположению датчика температуры подстилающей поверхности, который находится ближе к передатчику). На ярком свете в приемнике может образоваться конденсат, вследствие чего встроенная система диагностики выдаст предупреждение.
- Передатчик и приемник должны быть направлены прочь от явных источников загрязнения, таких как брызги от проезжающих мимо автомашин. Сильное загрязнение распознается датчиком автоматически.
- Вблизи прибора или в поле зрения приемника не должны находиться источники ярких вспышек.
- Если требуется установка датчика яркости фона, в наиболее вероятном направлении его поля зрения (обычно на север в северном полушарии и на юг – в южном, см. раздел Датчик яркости фона LM21 на стр. 61) должен быть обеспечен свободный обзор неба.
- 3. Линии питания и коммуникационные линии должны быть легко доступны.
 - При выборе места для размещения датчика FS11, необходимо уделить особое внимание доступности линии питания и коммуникационных линий, поскольку это влияет на объем работ, количество необходимых принадлежностей и, следовательно, на фактическую стоимость установки.

Выгрузка и распаковка

Комплект поставки, как правило, представляется в упаковочном листе, входящем в комплект документов поставки. Обычно датчик FS11 поставляется в четырех ящиках, содержащих следующие компоненты:

- Измерительный блок FSM102 (и дополнительно FSA11)
- Интерфейсный блок FSI102 с экраном для защиты от излучений (и дополнительно датчик LM21 и кронштейн для датчика)
- Хрупкая мачта (набор для монтажа упакован вместе с FSM102)
- Резервная батарея FSB101 (опция)

Два человека могут с легкостью перенести все ящики из автомобиля к месту установки.

ВАЖНО Необходимо аккуратно обращаться с ящиками, содержащими оптические компоненты. Не наклоняйте любой ящик более чем на пять сантиметров.

Распаковка

- 1. Прочтите упаковочный лист, входящий в поставочный комплект документов. Чтобы убедиться, что оборудование поставлено в полном объеме, сравните упаковочный лист с заказом на поставку.
- 2. Вскройте крышки.
- 3. В случае любых повреждений или несоответствий обратитесь к поставщику оборудования.
- Вложите упаковочные материалы и покрытия обратно в ящики и сохраняйте ящики с оборудованием для возможного возврата.

Информация о хранении

Датчик FS11 должен храниться в упаковке, в сухом помещении (не на открытом воздухе). Условия хранения должны быть следующими:

- температура от -50 °С до 70 °С
- относительная влажность не выше 95%

ВАЖНО Если датчик хранится при очень низких температурах и в комплект FS11 включена резервная батарея, удостоверьтесь, что батарея заряжена.

Заземление оборудования и защита от молний

Заземляющий провод (PE) кабеля питания обеспечивает стандартное заземление источника питания (перем. тока) внутри интерфейсного блока. Необходимо использовать 3-проводный кабель питания с заземляющим проводником.

Заземление оборудования предохраняет электрические модули системы FS11, в частности, от молний и радиочастотных помех. Заземление оборудования датчика FS11 выполнено с помощью заземляющего кабеля в изоляции и проводящих заземляющих стержней.

Корпус интерфейсного блока FSI102 должен быть заземлен с помощью штыря заземления расположенного под кабельным фланцем (см. **Рис. 3.** на стр. 26). К штырю должен быть подключен заземляющий кабель сечением 16 мм² в изоляции.

В случае использования хрупкой мачты измерительный блок FSM102 также должен быть заземлен с помощью заземляющего кабеля сечением 16 мм², расположенного внутри мачты.

В зависимости от ситуации, от одного до четырех стальных омедненных стержней размещаются в земле. Если необходимы несколько стержней, они должны быть расположены радиально по отношению к основанию мачты.

Должны соблюдаться следующие принципы заземления:

- для минимизации расхода кабеля, устанавливайте заземляющие стержни как можно ближе к основанию мачты. Заземляющий кабель может быть вмонтирован внутрь фундамента;
- длина заземляющих стержней зависит от локального уровня грунтовых вод. Нижний конец заземляющего стержня постоянно должен находиться во влажной среде.

Качество заземления может быть проверено с помощью прибора, измеряющего сопротивление земли. Это сопротивление должно быть меньше 10 Ом.

ВАЖНО Кабель заземления должен быть достаточно длинным, чтобы не препятствовать правильному наклону мачты.

К Рис. 3. относятся следующие цифровые обозначения:

- 1 = заземляющий штырь
- 2 = заземляющий кабель
- 3 = заземляющие стержни

ВНИМАНИЕ Если удаленные блоки не заземлены должным образом, удар молнии может вызвать опасный скачок напряжения через провода связи.

Выбор кабелей

В этом разделе описан порядок подбора кабелей питания и связи для датчика видимости FS11. Ответственность за поставку кабеля питания, коммуникационного кабеля, а также специальных трубок для них лежит на клиенте. В отношении всех полевых кабелей необходимо помнить о следующем:

- Следует использовать армированные полевые кабели.
- Кабели должны быть пригодными для использования под землей.
- Диаметр жил кабеля должен соответствовать максимально допустимому падению напряжения, примеры см. в **Табл. 6.** на стр. 29.
- Подводка кабелей к оборудованию должна осуществляться через специальные трубки.
- Заземление экрана кабеля должно выполняться на обоих концах.
- Используйте устройства защиты от перенапряжения на обеих сторонах полевых кабелей.

Для защиты кабелей рекомендуется размещать в земле яркую предупреждающую пластиковую ленту на расстоянии приблизительно 0,5 м над кабелями и 0,2 м под кабелями.

Для механической защиты кабеля питания переменного тока и коммуникационного кабеля необходимо использовать армированные трубки или им подобные на всем протяжении от распределительной коробки до земли и на 0,7 м под землю.

Это оборудование предназначено для непрерывной круглосуточной работы. Напряжение питания переменного тока должно подаваться непрерывно и без скачков. Если флюктуации напряжения питания в сети переменного тока превышают заданные допуска, рекомендуется использовать стабилизаторы напряжения.

Кабель питания

Датчик FS11 поставляется с 3-метровым кабелем питания со свободными концами. Если в непосредственной близи нет терминала на 115/230 В переменного тока, необходим дополнительный силовой кабель для подсоединения датчика FS11 к ближайшему источнику электропитания. Этот кабель должен быть армированным и пригодным для прокладки под землей. Армирование защищает кабель от механических повреждений и ударов молнии. Экран кабеля должен быть заземлен с двух сторон.

ВАЖНО Для подключения дополнительного силового кабеля переменного тока настоятельно рекомендуется использовать отдельную распределительную коробку. В компании Vaisala можно приобрести распределительную коробку, которая умещается внутри радиационного экрана FS11. См. **Рис. 4.** ниже. В этой распределительной коробке имеется также дополнительная защита от молний, рекомендуемая к использованию в местах с высокой повторяемостью гроз.

ВАЖНО При работе с электрическим оборудованием необходимо соблюдать локальные требования и меры безопасности.

0206-030

Рис. 4. Распределительная коробка

К Рис. 4. относятся следующие цифровые обозначения:

1 = Распределительная коробка (Termbox-1200)

Выбор толщины кабеля для электропитания датчика FS11 определяется расстоянием между датчиком FS11 и

распределительным трансформатором, а также потребляемой мощностью. Минимальные требования к кабелю питания – 3жильный силовой кабель (AWG 15) с сечением каждой жилы не менее 1,5 мм².

Рекомендуемые сечения проводов питания и типовые диаметры кабеля для напряжения питания 230 В перем. тока приведены в . Эти данные относятся к медному кабелю и 5-процентному падению напряжения. Для напряжения питания 115 В перем. тока максимальные расстояния должны быть в четыре раза меньше. Максимальная потребляемая мощность датчика FS11 составляет 300 Ватт.

Табл. 6. Выбор кабеля питания переменного т	гока
---	------

Максимальное расстояние до источника пинания	Сечение провода	Ближайший AWG класс	Диаметр типового неармированн ого кабеля
350 м	3 × 1,5 мм ²	No. 15 AWG	10 мм
600 м	3 × 2,5 мм ²	No. 13 AWG	14 мм
950 м	$3 \times 4,0$ мм ²	No. 11 AWG	18 мм

ВАЖНО

Для подключения кабелей с диаметром более 15 мм необходима отдельная распределительная коробка, например, Termbox1200, предлагаемая фирмой Vaisala.

Коммуникационный кабель

Прокладка кабелей и кабельных каналов должна выполняться заказчиком. Кабели, используемые для передачи цифровых и низкоуровневых аналоговых сигналов, должны соответствовать следующим требованиям: Все кабели должны быть армированными, пригодными для прокладки под землей, и должны подводиться к оборудованию в кабельных каналах. Если используемые кабели не армированы, они должны прокладываться в трубах. Экраны коммуникационных кабелей должны быть заземлены с обоих сторон.

Для модемного кабеля и сигнального кабеля RS используйте экранированную витую пару 2 х 0,22 мм² (AWG 24, диаметр проводника 0,61 мм) в оболочке с минимальным внешним диаметром 8 мм. Если длина модемной линии превышает 50 км, обратитесь за консультацией в фирму Vaisala.

Если используются разъемы RS-485, уделите особое внимание выбору качественного кабеля. Экран должен быть непрерывным, другими словами, также подключенным к распределительной коробке.

Дополнительные сведения см. в разделе Способы передачи данных на стр. 52.

ВАЖНО Для подключения кабелей с диаметром более 15 мм необходима отдельная распределительная коробка, например, Termbox1200, предлагаемая фирмой Vaisala.

Процедура установки

Процедура установки системы FS11 состоит из нескольких отдельных процедур, которые подробно описаны в следующих разделах.

Возведение фундамента

Рекомендуется заливка бетонного фундамента. Могут быть также использованы существующие горизонтальные жесткие конструкции. Рекомендуемые минимальные размеры фундамента представлены на **Рис. 5.** ниже. Простейший способ монтажа винтов фундамента – заложить их при заливке бетона. Если фундамент был залит заранее, необходимо просверлить в нем три отверстия для клиньев с резьбой.

Рис. 5. Заливка бетонного фундамента

Если для установки датчика возводится новый фундамент, рекомендуется вмонтировать в него специальные трубки для силового и сигнального кабелей. Трубки должны быть расположены таким образом, чтобы их окончания находились в центре треугольника, образованного крепежными болтами.

Набор для монтажа, включаемый в комплект поставки системы FS11 содержит все необходимое оборудование как для монтажа датчика на вновь изготовляемом фундаменте, так и для крепления на существующей поверхности. Треугольный шаблон для сверления может быть использован в качестве вспомогательного инструмента, который необходимо удалить с фундамента перед креплением основания мачты.

Монтаж при заливке бетонной подушки

При монтаже системы FS11 на новый фундамент необходимо выполнить следующие процедуры:

- 1. Привинтите три усиливающие пластины на нижние концы фундаментных винтов, как показано на **Рис. 6.** на стр. 33. Для предотвращения вращения пластин после размещения на необходимых местах, сбейте молотком резьбу под и над пластинами.
- 2. Зафиксируйте шаблон для сверления на верхних концах фундаментных винтов с помощью шести гаек М16.
- 3. Установите сборку на бетонное основание как показано на **Рис. 6.** на стр. 33.
- 4. После застывания бетона удалите шаблон.

Рис. 6. Возведение фундамента для FS11

На Рис. 6. на стр. выше используются следующие цифровые и буквенные обозначения:

- 1 = Шаблон для сверления
- 2 = Фундаментный винт
- 3 = Усиливающая пластина
- 4 = Направление оптической оси датчика яркости фона (обычно на север в северном полушарии и на юг – в южном)

Монтаж на существующей поверхности

При монтаже системы FS11 на существующей поверхности необходимо выполнить следующие процедуры:

- 1. Разместите шаблон на имеющемся фундаменте.
- 2. Просверлите через шаблон три отверстия диаметром 20 мм глубиной от 100 до 260 мм. Снимите шаблон. Удалите пыль из отверстий.
- 3. Вверните вручную фундаментные винты в клинья с резьбой.
- 4. Защитите верхние части винтов с помощью двух гаек, свинченных вместе.
- Вставьте пары «клин с резьбой + фундаментный винт» в отверстия в фундаменте, клиньями вниз. См. Рис. 7. ниже. Забейте пары в отверстия фундамента, чтобы клинья полностью вошли в отверстия.
- 6. Затяните винты, насколько это возможно.

К Рис. 7. выше относятся следующие цифровые обозначения.

- 1 = Фундаментный винт
- 2 = Клин с резьбой
Сборка FS11

Для сборки системы FS11 необходимо выполнить следующие процедуры:

1. Установите основание и выровняйте его с помощью шести гаек М16 (см. **Рис. 8.** на стр. 36).

ВАЖНО Если длина хрупкой мачты более 3 метров, не устанавливайте опору для наклона мачты, поставляемую в комплекте для возведения фундамента FS211296.

 Если устанавливается хрупкая мачта, закрепите ее пьедестал на основании с помощью трех гаек М16 (см. Рис. 10. на стр. 38) и шарнирного болта М8. Для затяжки гаек М16 воспользуйтесь гаечным ключом, входящим в комплект FSA11.

Рис. 8. Установка мачты FS11 с помощью монтажного комплекта FS211296

На Рис. 8. выше используются следующие цифровые и буквенные обозначения:

- 1 = Опора для наклона мачты
- A = Направление оптической оси датчика яркости фона (обычно на север в северном полушарии и на юг – в южном)

3. Наклоните хрупкую мачту и проложите заземляющий кабель в опоре (см. **Рис. 9.** ниже). Поднимите мачту.

Рис. 9. Монтаж кабеля заземления хрупкой мачты FS11

Следующие цифровые обозначения относятся к Рис. 9. выше:

- 1 = Заземляющий кабель
- 2 = Винтовое крепление

 Если устанавливается алюминиевая мачта, закрепите ее пьедестал на основании, предварительно удалив три ранее завинченных установочных винта М16 (см. Рис. 10. ниже). Закрепите поставляемую 12-миллиметровую защитную заглушку на основании и используйте четыре монтажных винта из комплекта FS211296 для монтирования пьедестала.

Рис. 10. Установка алюминиевой мачты FS11 с помощью монтажного комплекта FS211296

На Рис. 10. выше используются следующие цифровые и буквенные обозначения:

- 1 = Установочные винты М16, 3 шт
- 2 = Защитная заглушка
- 3 = Монтажные винты, 4 шт
- A = Направление оптической оси датчика яркости фона (обычно на север в северном полушарии и на юг – в южном)
- 5. Закрепите заднюю панель радиационного экрана на мачте с помощью двух поставляемых скоб (см. Рис. 12. ниже). Проследите за тем, чтобы прокладки, препятствующие скольжению, были правильно установлены между скобами и мачтой. Завинтите болты изнутри и закрепите их с помощью гаек снаружи.
- 6. Установите плечо датчика, совместив отверстия на концах вилок плеча с резьбовыми отверстиями с внешней стороны

1002-037

винтами. См. Рис. 11. ниже.

задней панели. Закрепите плечо четырьмя установочными

Рис. 11. Закрепление плеча датчика установочными винтами.

1001-106

Рис. 12.

Монтаж задней панели радиационного экрана

 Присоедините интерфейсный блок FSI102 к задней панели радиационного экрана (см. Рис. 19. на стр. 44). Верхняя часть интерфейсного блока закрепляется путем вставки крючка позади интерфейсного блока в отверстие в задней панели. Нижняя часть интерфейсного блока закрепляется с помощью двух винтов.

ВАЖНО Если приспособление для наклона мачты было удалено из-за длины мачты, необходимо использовать временное приспособление для наклона мачты.

Рис. 13. Наклон алюминиевой и хрупкой мачт

- **ВАЖНО** Чтобы разъем измерительного кабеля прошел через отверстие внутри мачты, он должен быть протянут перед протяжкой сигнального и силового кабелей.
 - 8. Убедитесь, что вокруг горловины измерительного блока FSM102 установлена тонкая резиновая кольцевая прокладка. См. Рис. 14. на стр. 41.

9. Подключите штекер кабеля измерительного блока в рабьем в нижней части FSM102 (см. **Рис. 14.** ниже).

Рис. 14. Подключение измерительного блока

К Рис. 14. выше относятся следующие цифровые обозначения.

- 1 = Концевая прокладка измерительного блока
- 2 = Передатчик
- 3 = Датчик температуры поверхности
- 4 = Приемник
- 10. Вставьте измерительный блок в мачту и закрепите в нужном направлении, как описано в разделе Расположение и ориентация на стр. 22 с помощью двух 8-миллиметровых болтов (см. Рис. 14. выше). Головки приемника и передатчика можно отличить друг от друга по расположению датчика температуры, который располагается ближе к передатчику.
- 11. Поднимите мачту.

12. Поднимите корпус интерфейсного блока FSI102 и подвесьте его, введя расположенный сзади крючок в правое отверстие задней панели. См. Рис. 15. ниже.

ОСТОРОЖНО Будьте осторожны при подъеме и подвешивании интерфейсного блока FSI102. Этот блок имеет большой вес.

Рис. 15. Подвеска корпуса на задней панели

13. Чтобы облегчить протяжку кабеля через трубу, прикрепите к кабельному разъему длинную веревку.

Рис. 16. Протяжка кабельного разъема с помощью веревки

Следующие цифровые обозначения относятся к Рис. 16. выше:

- 1 = Кабельный разъем с веревкой
- 2 = Протяжка кабельного разъема

	14.	Если предстоит монтаж датчика яркости фона, протяните кабель LM21 через плечо датчика. (Чтобы облегчить протяжку кабеля, прикрепите веревку к кабельному разъему LM21). Присоедините кабель к LM21 и закрепите LM21 и скобу на плече датчика. Правильное расположение кабеля показано на
		Рис. 17. ниже.
ВАЖНО	При	подключении LM21 датчик FS11 должен быть выключен.

Рис. 17. Протяжка кабеля LM21

15. Присоедините разъем кабеля к LM21 и закрепите LM21 на плече датчика как показано на Рис. 18. ниже.

Рис. 18. Монтаж LM21

Следующие цифровые обозначения относятся к Рис. 18. на стр. 43:

- 1 = Подключение кабельного разъема к LM21
- 2 = Монтаж LM21 на плече датчика
- 16. Если требуется тонкая регулировка направления оптической оси датчика яркости фона LM21, она может быть выполнена путем поворота его монтажного кронштейна. Если за счет поворота монтажного кронштейна не удается обеспечить желаемую ориентацию LM21, можно подрегулировать положение задней панели FS11, ослабив винты, удерживающие скобы, и поворачивая заднюю панель радиационного экрана. Затяните винты после регулировки.

Рис. 19. Установка корпуса интерфейсного блока

17. Если требуется установить заградительный огонь, поднимите корпус и подвесьте его через отверстие с левой стороны задней панели. Установите и проложите кабели как показано на **Рис. 20.** на стр. 45. Размещение проводов внутри корпуса показано на **Рис. 33.** на стр. 63.

ВАЖНО Экран кабеля заградительного огня должен быть надежно заземлен при подключении к кабельной клемме корпуса интерфейсного блока. См. **Рис. 25.** на стр. 52.

Рис. 20. Сборка плеча датчика

Верните интерфейсный блок обратно на его первоначальное 18. место в задней панели.

Убедитесь, что кабели не зажаты между интерфейсным блоком и ВАЖНО задней панелью.

19. Закрепите и закройте радиационный экран как показано на **Рис. 21.** ниже.

Вставка батареи при наличии дополнительного аккумулятора FSB101

В случае установки дополнительного резервного аккумулятора FSB101 зарядный модуль QBR101 размещается в интерфейсном блоке. Аккумулятор емкостью 2 А-часа упакован отдельно и устанавливается в интерфейсный блок следующим образом:

1. Откройте дверцу экрана и интерфейсного блока с помощью поставляемого ключа

ВАЖНО Перед выполнением следующих шагов убедитесь, что отключены подача питания переменного тока и резервная батарея.

2. Вывинтите четыре винта, удерживающих крышку платы, и снимите ее. См. Рис. 22. на стр. 47.

Рис. 22. Резервная батарея без крышки

Следующие цифровые обозначения относятся к Рис. 22. выше:

- 1 = Плюсовая (+) клемма батареи (черный кабель с красной полосой)
- 2 = Минусовая (-) клемма батареи (полностью черный кабель)

ОСТОРОЖНО Не допускайте короткого замыкания батареи.

винта.

3.	Вставьте батарею на ее место под крышкой платы и оденьте
	проводные контакты на соответствующие полюса батареи:
	черный провод с красной полосой – на плюс (+) и полностью
	черный провод – на минус (-).
4.	Установите крышку и затяните четыре удерживающих ее

- 5. Включите выключатель питания переменного тока и выключатель резервной батареи.
- 6. Завершив работы по замене батареи, закройте интерфейсный блок и закройте его крышкой.

Приблизительно после 5 лет эксплуатации батарею следует заменить, чтобы обеспечить надежное резервное питание в случае отказа линии питания переменного тока.

ВАЖНО В качестве резервной батареи используется батарея с клапанным регулированием. В соответствии со стандартом ISO 14001, такие батареи подлежат повторному использованию.

Подключение кабелей

Рис. 23. Кабель корпуса интерфейсного блока

Номер	Описание	Резьба	Диаметр каболя	Размер
1	Сетевая розетка питания перем. тока	M20 x 1,	каосля 58 - 11 мм	24 мм
2	Питание (перем. ток)/данные (дополнительно)	рем. M20 x 1,511 - 14 м цьно)		24 мм
3	Кабель данных	M20 x 1,	58 - 11 мм	24 мм
4	Кабель LM21 (дополнительно)	M16 x 1,	54 - 8 мм	18 мм
5	Кабель датчика заградительного огня (дополнительно)	M16 x 1,	55 - 10 мм	20 мм
6	Зарезервирован	M16 x 1,	55 - 10 мм	20 мм
7	Кабель FSM102	M16 x 1,	54 - 8 мм	18 мм
8	Зарезервирован	M16 x 1,	55 - 10 мм	20 мм

Следующие цифровые обозначения относятся к Рис. 23. на стр. 48:

Кабель питания

Интерфейсный блок поставляется в комплекте с трехметровым кабелем питания со своболными концами.

1. Кабель питания должен быть либо подключен к распределительной коробке, которая может располагаться под корпусом интерфейсного блока, либо пропущен через мачту (вход находится под задней панелью, выход – в нижней части мачты) в местную распределительную коробку. Кабель питания не имеет экрана. Убедитесь, что подключение проводов выполнено правильно, особенно провода заземления (как правило, желто/зеленый). См. Рис. 24. на стр. 51.

2. Подключите шнур питания к клемме выключателя питания (перем. ток) и клемме защитного заземления.

Рис. 24. Принцип прокладки кабелей

Следующие цифровые обозначения относятся к Рис. 24. выше:

- 1 = Интерфейсный контроллер FSC202
- 2 = Предохранитель Т5А линии пост. тока
- 3 = Предохранитель T5A линии перем. тока питания нагревателя, зарезервированной для PWD32 (только FS11P)
- 4 = Предохранитель T5A линии перем. тока питания нагревателя для LM21
- 5 = Предохранитель M10A линии перем. тока питания нагревателя для FSM102
- 6 = Селектор линейного напряжения
- 7 = Плата питания FSP103
- 8 = Выключатель питания и размыкатель
- 9 = Защитное заземление РЕ
- 10 = Линия L
- 11 = Провод нейтрали
- 12 = Кабель питания (перем. ток)

ВАЖНО Если напряжение в линии отличается от 230 В (начальная заводская установка), проверьте установки напряжения источника питания (перем. ток) FSP103 (115 В или 230 В перем. тока). См. **Рис. 24.** выше.

Коммуникационный кабель

На корпусе интерфейсного блока FSI102 есть разъем для подключения коммуникационного кабеля диаметром от 8 до 11 мм. Для этих целей также может использоваться дополнительный разъем, предназначенный для подключения питания (перем. тока) или коммуникационного кабеля. Кабель, выходящий из блока, должен быть протянут внутри нижней секции мачты. В соответствии с требованиями EMI, этот кабель должен быть заземлен в клемме.

ВАЖНО Если устанавливается распределительная коробка, экран кабеля должен быть заземлен на клеммах входа и выхода.

Для выполнения радиочастотного заземления кабелей в оплетке необходимо выполнить следующие действия:

 Проложите сигнальный кабель через кабельный вход См. Рис. 25. на стр. 52.

- 2. Зачистите 50 см кабеля, оставляя примерно 2 см экрана.
- 3. Снимите крышку клеммы кабеля, включая пластиковый цилиндр. Наденьте крышку с пластиковым цилиндром на кабель.
- 4. Если диаметр подключаемого кабеля небольшой (менее 5 мм), наденьте дополнительные трубочки.
- 5. Наденьте пластиковый цилиндр на кончик кабельного экрана. Натяните кабельный экран поверх цилиндра, см. **Рис. 25.** ниже.
- 6. Закрепите кабель на клемме и продолжайте прокладку.
- 7. Таким способом заземлите сигнальный кабель с обоих концов.
- 8. Проложите сигнальный кабель в соответствии с инструкциями, приведенными в разделе Способы передачи данных ниже.

Рис. 25. Инструкция по заземлению кабеля

К Рис. 25. относятся следующие цифровые обозначения:

1 = Экран кабеля

Способы передачи данных

Данные датчика FS11 могут передаваться с помощью интерфейсов RS-232 и RS-485, а также по модемной линии. Отдельный интерфейс RS-232 предусмотрен специально для сервисных целей. Перед установкой системы определите ваши потребности по передаче данных. Метод передачи зависит от расстояния между датчиком FS11 и компьютером или дисплеем, а так же от количества подключенных датчиков FS11. Возможные варианты передачи данных приведены в **Табл. 7.** ниже.

Длина кабеля	Один датчик FS11	Несколько датчиков на
		линии
< 50 м	RS-232, RS-485	RS-485, модем (только 300 бит/с)
< 1200 м	RS-485, модем	RS-485, модем (только 300 бит/с)

Табл. 7. Длины коммуникационных кабелей

Длина кабеля	Один датчик FS11	Несколько датчиков на линии
> 1200 м	Модем	Модем (только 300 бит/с)

Настройки последовательного коммуникационного порта

ВАЖНО	Настройки последовательного коммуникационного порта датчика FS11, заданные по умолчанию: 9600 бод, отсутствие контроля
	четности, 8 бит данных и 1 стоповый бит.

Последовательная передача через RS-232

Для передачи данных в стандарте RS-232 подключите сигнальный кабель к винтовому терминалу на плате контроллера FSC202. См. **Рис. 26.** на стр. 54. Линии контроля потока RTS и CTS не требуются, но их можно использовать.

Аппаратный контроль потока может быть включен в FS11 с помощью команды **SET DATA_PORT RS-232 HW_FLOW_CNTR.** При аппаратном контроле потока линия контроля RTS сообщает «Ready for Receiving» (готов к приему).

Аппаратный контроль передачи может быть включен в FS11 с помощью команды **SET DATA_PORT RS-232 HW_TRANSMIT_CNTR.** При аппаратном контроле передачи линия контроля RTS сообщает «Request to Send» (запрос на отправку) и может быть использована для контроля модемной несущей.

По умолчанию линии RTS и CTS не используются.

ВАЖНО Экран кабеля RS-232 должен быть надежно заземлен на кабельной клемме корпуса интерфейсного блока, см. **Рис. 25.** на стр. 52.

Рис. 26. Вариант связи по протоколу RS-232

Последовательная многоточечная передача через RS-485

Коммуникационный стандарт RS-485 позволяет передавать данные от нескольких датчиков FS11 (полудуплекс) на компьютер с помощью витой пары. Интерфейс RS-485 оптоизолирован. Для передачи данных в стандарте RS-485 подключите сигнальный кабель к винтовому терминалу на плате контроллера. См. **Рис. 27.** на стр. 55.

ВАЖНО Экран кабеля RS-485 должен быть надежно заземлен на кабельной клемме корпуса интерфейсного блока, см. **Рис. 25.** на стр. 52.

Рис. 27. Связь в стандарте RS-485

Оконечной нагрузкой цепи RS-485 должен быть 120-омный резистор. Это особенно важно при большой длине кабеля. Если датчик FS11 находится в конце цепи RS-485, 120-омный резистор может быть подключен между винтовыми клеммами. 120-омный резистор находится в пластиковом пакете, прикрепленном к кабелю питания внутри корпуса интерфейсного блока.

Рис. 28. еп раде 56 иллюстрирует полудуплексную передачу данных по одиночной витой паре в стандарте RS-485.

Рис. 28. Применение RS-485

Модем DMX501 (опция)

Модем DMX501 предназначен для передачи данных по выделенной линии в следующих режимах: 300 бит/с V.21, 1200 бит/с V.22 и 2400 бит/с V.22 bis. Как правило, модем используется для передачи данных на большие расстояния (~10 км) по выделенному телефонному кабелю. Его не следует подключать к телефонной сети общего пользования, поскольку для этого требуется специальное разрешение поставщика услуг. Однако большинство коммерческих модемов, поддерживающих стандарты CCITT, а также модемы DMX50 и DMX55 для системы Vaisala MILOS 500 можно использовать вместе с модемом DMX501.

Если модем установлен (модем был включен в заказ на систему), подключите входящие сигнальные кабели к винтовым зажимам 25 и 26 модулей MOD3 и MOD4 на плате контроллера FSC202. См. **Рис. 29.** на стр. 57.

ВАЖНО Экран модемного кабеля должен быть надежно заземлен на кабельной клемме корпуса интерфейсного блока, см. **Рис. 25.** на стр. 52.

Рис. 29. Подключение модемного кабеля

Если модем DMX501 изначально не установлен, он может быть вставлен в интерфейсный блок FSI102 позднее. Для установки модема необходимо выключить питание (перем. тока) (если установлена резервная батарея, ее также необходимо выключить). Отсоедините все разъемы от платы FSC202. Вывинтите четыре винта, удерживающих крышку платы, и снимите ее. Крышку нужно осторожно приподнять под небольшим углом, чтобы обойти край платы FSP103 (см. **Рис. 30.** на стр. 58). Вывинтите два винта, удерживающих крышку платы FSC202 и осторожно снимите крышку. Распакуйте модемный модуль DMX501 и легким нажимом вставьте его на свое место в плате FSC202 (см. **Рис. 30.** на стр. 58

Необходимо очень аккуратно обращаться с платами. Во избежание
повреждения их электростатическим разрядом не прикасайтесь к
компонентам плат. Заземлите себя перед попыткой прикосновения
к платам.

ВАЖНО Не допускайте попадания влаги на платы.

VAISALA

ВАЖНО Необходимо обеспечить правильную ориентацию модуля DMX501.

После установки модема DMX501 вдвиньте плату FSC202 на прежнее место и зафиксируйте ее в правильном положении двумя винтами. Установите крышку и затяните четыре удерживающих ее винта. Подключите разъемы к плате FSC202, соблюдая правильное местоположение каждого разъема (см. цифры на крышке платы).

Выполните необходимое подключение сигнальных проводов, как описано выше, и включите питание (перем. тока) (если установлена резервная батарея, ее также включите).

Рис. 30. Установка модема DMX501

К Рис. 30. относятся следующие цифровые обозначения:

1 = Модемный модуль DMX501

Многоточечное модемное подключение

Если реализовано многоточечное модемное подключение (несколько устройств подключены к одной линии), возможен единственный стандарт передачи данных – 300 бит/с V.21. В этом случае компьютер сбора данных или метеостанция выступают в роли управляющего устройства, запрашивая все датчики FS11, а также другие возможные датчики.

Главный модем должен находиться в режиме запроса. Все остальные модемы должны находиться в режиме ответа, несущая по умолчанию должна быть отключена. Модем датчика FS11 может быть переключен в режим ответа с помощью команды SET MODULE MODEM V21 ANSWER_NC. В этом случае датчик включает несущую, только когда получает соответствующий запрос, и отключает ее после отправки сообщения. Если к одной линии подключено несколько датчиков FS11, они должны иметь разные идентификаторы.

В связи с ограниченными возможностями режима передачи 300 бит/с V.21, количество датчиков FS11, подключенных к одной линии, не должно превышать шести, при этом должен быть выбран тип сообщения 2, а интервал опроса 15 секунд. Если есть необходимость использовать другой тип сообщения или иной интервал опроса, максимальное количество датчиков (N) может быть рассчитано по следующей формуле:

N*message_chars/30(char) + N*1 second < interval

Подключение сервисного терминала

Любой компьютер, на котором установлено терминальное программное обеспечение или VT100-совместимый терминал с последовательным интерфейсом RS-232, может быть использован в качестве сервисного терминала датчика FS11. Дополнительный сервисный кабель QMZ101 (входящий в калибровочный комплект FSA11) оборудован 9-штырьковым D-разъемом для подключения к компьютеру и разъемом для подключения к датчику FS11. Внешние сервисные разъемы датчика FS11 расположены с правой стороны интерфейсного блока, если смотреть на него со стороны дверцы. Верхний разъем зарезервирован для блока PWD32 (только для использования с моделью FS11P), а нижний – для FS11 (см. **Рис. 31.** на стр. 60). Разъем защищен крышкой. После отключения сервисного кабеля не забудьте установить защитную крышку на прежнее место.

Рис. 31. Местоположение внешних разъемов для подключения сервисного кабеля

Следующие цифровые обозначения относятся к Рис. 31..

- 1 = Внешний разъем для подключения сервисного кабеля, зарезервированный для PWD32 (только для FS11P)
- 2 = Внешний разъем для подключения сервисного кабеля для FS11

Дополнительные датчики яркости фона

Датчик FS11 может быть дополнен одним или двумя датчиками яркости фона.

- 1 Датчик яркости фона LM21 для использования в системах оценки дальности видимости на взлетно-посадочной полосе (RVR)
- 2 Фотопереключатель день/ночь для определения общей метеорологической дальности видимости в ночное время

Датчик яркости фона LM21

Дополнительный датчик LM21 позволяет измерить уровень внешней засветки или яркость фона при оценке дальности видимости на взлетно-посадочной полосе. Этот датчик устанавливается на кронштейне, который крепится к задней панели радиационного экрана. Механическая установка LM21 и кронштейна показана на Подробные инструкции по сборке приведены на страницах 42 и 43, шаги 13, 14 и 15. В северном полушарии датчик должен быть направлен в сторону северной части неба. Необходимо избегать попадания прямых солнечных лучей в датчик. Датчик яркости фона обычно устанавливается под углом 20° – 50° к горизонтальной поверхности. Обычно рекомендуемый угол установки составляет 30°, если нет каких-либо особых причин увеличивать этот угол.

Датчик яркости фона предназначен для измерения освещенности, на фоне которой пилот воздушного судна должен увидеть огни взлетно-посадочной полосы или аэродромные маркеры. Чтобы, с одной стороны, получать максимально репрезентативные данные, с другой, – выполнить все требования к установке, необходимо выбрать компромиссное положение датчика. В этот датчик не должен попадать прямой свет огней ВПП.

Для получения более подробной информации о датчике яркости фона LM21 обратитесь к Руководству по эксплуатации датчика LM21. Для получения информации о конфигурации системы обратитесь к разделу фона LM21.

Фотопереключатель день/ночь

В некоторых случаях необходимо вычислять по измеренным значениям метеорологической оптической дальности (MOR)

специфическую ночную видимость. В этих случаях для различения дневных и ночных условий достаточно простого фотопереключателя день/ночь. Следует использовать низковольтную (12 В пост. тока) модель фотопереключателя. Выход переключателя день/ночь может подсоединяться ко входу фотопереключателя на плате процессора FSC202. На **Рис. 32.** ниже подробно показана схема подключения. Для получения информации о конфигурации системы обратитесь к разделу Датчик день/ночь на стр. 101.

Замкнутые контакты переключателя день/ночь соответствуют темноте, то есть ночи.

ВАЖНО Экран кабеля фото переключателя должен быть надежно заземлен на клемме корпуса интерфейсного блока, см. **Рис. 25.** на стр. 52

Рис. 32. Подключение фотопереключателя день/ночь

Опция заградительного огня

Активация опции заградительного огня требует использования команды более высокого уровня SET +12VOUT ON. См. список команд высокого уровня Табл. **10** на стр. 73

Рис. 33. Схема прокладки кабелей при подключении заградительного огня

Запуск

Перед закрытием крышки корпуса интерфейсного блока рекомендуется провести пробный запуск системы.

- 1. Подключите терминал к датчику через последовательную линию (см. раздел Последовательная передача через RS-232 на стр. 53 ог сервисного терминала на стр. 59) Установите следующие параметры передачи: 9600 бит/с, и кадр данных должен содержать: 8 бит данных, 1 стоповый бит без контроля по четности.
- 2. Включите выключатель питания (перем. тока) на интерфейсном блоке FSI102. Если установлена резервная батарея, то ее также необходимо включить. См. **Рис. 34.** ниже.

1004-086

Рис. 34. Включение блока

Следующие цифровые обозначения относятся к Рис. 34. выше:

- 1 = Выключатель питания (перем. тока)
- 2 = Выключатель батареи

	3.	Проверьте, что красный светодиод Reset на плате контроллера интерфейсного блоке вспыхивает один раз, после чего зеленый светодиод Status должен начать выдавать продолжительные вспышки с частотой примерно 1 Гц. Если этого не происходит, продолжайте поиск неисправности (см. ГЛАВА 7, поиск и устранение неисправностей на стр. 165).
	4.	После запуска датчик FS11 выдает на дисплей следующую строку: FS11 n.nn.n.nn где n.nn.nn – версия ПО, пересмотр и номер сборки.
	5.	Подождите одну минуту и переведите датчик в командный режим с помощью команды OPEN. С помощью команды STATUS CHECK удостоверьтесь, что не обнаружено ошибок оборудования или предупреждений.
	6.	Если подключение производилось через порт данных, введите режим автоматических сообщений с помощью команды CLOSE , затем удостоверьтесь, что сообщение появляется на дисплее каждые 15 секунд.
ВАЖНО	При выключении питания не забудьте отключить как основное питание (перем. тока), так и резервную батарею (если она установлена).	

Начальные установки

Как правило, датчик видимости FS11 подключается к компьютеру или устройству сбора данных, входящему в состав автоматической метеостанции. После установки физического подключения можно настроить отдельные коммуникационные параметры с помощью программного обеспечения FS11. Выбор подходящих параметров зависит от облика системы в целом.

По умолчанию, датчик передает новые сообщения через порт RS-232 в ASCII коде каждые 15 секунд. Пользователь может изменить как тип сообщения, так и интервал передачи данных. Датчик может также использоваться в режиме запроса, когда сообщение с данными отправляется только после того, как компьютер затребует его с помощью специальной команды. Коммуникационные параметры, установленные по умолчанию, перечислены в **Табл. 8**. на стр. 66.

Параметр	Значение по умолчанию
Скорость передачи	9600 бод
Параметры передачи	8N1
Тип передачи	RS-232
Режим (автоматический или по	Автоматический, сообщение 2
запросу), тип сообщения	интервал 15
Порт сообщений	Данные
Подтверждение АСК/NAK	выкл.
2-й порт сообщений	отсутствует
2-й тип сообщения	отсутствует
Идентификатор датчика	не установлен

Табл. 8. Коммуникационные параметры, установленные по умолчанию

Если несколько датчиков подключены к одной коммуникационной линии (RS-485/Модем), датчик FS11 должен использоваться в режиме запроса, и каждый датчик должен иметь собственный идентификатор.

глава 4 **РАБОТА**

Датчик видимости FS11 является полностью автоматической системой, которая не нуждается в регулярном участии пользователя. Как правило, нет необходимости изменять конфигурацию датчика, установленную на заводе.

Сообщения, содержащие информацию о видимости, могут передаваться датчиком FS11 автоматически или по запросу компьютера.

Параметры системы FS11 могут быть установлены с помощью команды **SET.** Остальные команды могут быть использованы для просмотра статуса системы и других данных. Все команды могут передаваться как по сервисной линии, так и по линии передачи данных. Команды, передаваемые по сервисной линии, не создают помех сообщениям о дальности видимости, передаваемым по линии передачи данных.

Команды FS11

ВАЖНО Все параметры команды должны быть отделены друг от друга пробелом. Каждая команда должна заканчиваться нажатием клавиши ENTER.

Включение и выключение командного режима

Перед тем, как можно будет передать любые команды датчику FS11, сервисная линия или линия данных FS11 должны быть назначены оператору. В противном случае они назначены для передачи автоматических сообщений или запросов. Пользователь устанавливает командыый режим с помощью команды **OPEN**.

Команда OPEN

Если идентификатор устройства (ID) не установлен, введите

OPEN

Если ID, состоящий из одного символа, установлен, например, А, введите

OPEN A

Если определен ID, состоящий из нескольких символов, например, RWY31, надо использовать только первый символ ID. Введите

OPEN R

Если ID установлен, но забыт, введите

OPEN *

Если в команду **OPEN** включен тип устройства **FS**, нет необходимости вводить ID. Такой тип устройства может включаться в команду только в том случае, если к линии подключен только один датчик FS11. Эта команда сходна с командой **OPEN** *, за исключением того, что она переключает в командный режим только один датчик FS11, игнорируя остальные датчики, подключенные к данной линии. Введите

OPEN FS

Если в линии имеются другие датчики с таким же ID, командный режим датчика FS11 может быть инициирован включением с ID типа устройства FS. Эта команда сходна с командой OPEN ID, за исключением того, что она переключает в командный режим только один датчик FS11, оставляя остальные датчики с тем же ID, подключенные к этой линии, не переключенными. Если ID, состоящий из одного символа, установлен, например, A, введите

OPEN FS A

Ответ датчика FS11 будет следующим:

FS11-A LINE OPENED FOR OPERATOR COMMANDS

Если установлен ID, состоящий из нескольких символов, например, RWY31, введите

OPEN FS RWY31

Ответ датчика FS11 будет следующим:

FS11-RWY31 LINE OPENED FOR OPERATOR COMMANDS

Если в течение 10 минут после переключения в командный режим не вводится никаких команд, FS11 закрывает линию автоматически. Интервал времени, после которого происходит закрытие линии, может быть настроен пользователем.

Если датчик, будучи в командном режиме, получает команду **OPEN,** предназначенную другому устройству, он автоматически выполняет команду **CLOSE.**

Команда CLOSE

С помощью команды **CLOSE** линия может быть переключена в режим автоматической передачи данных.

Если идентификатор не установлен, FS11 отвечает:

FS11 LINE CLOSED

Если ID установлен, например А, датчик FS11 отвечает:

FS11-A LINE CLOSED

Возможные команды

С помощью команды **HELP** можно получить информацию обо всех доступных командах. Введя **HELP** *Command* можно получить информацию о конкретной команде.

Иерархия и описания команд описаны в

Табл. 9. на стр. 71. В дополнение к набору команд уровня пользователя имеется второй, расширенный уровень команд для более глубокого администрирования и обслуживания системы. Команда доступа к этому расширенному уровню имеет вид **LEVEL 1.** Командная подсказка показывает текущий уровень каждой команды. У команд расширенного уровня подсказка имеет вид 1>.
Команда	Описание
CLOSE	Освобождает порт для передачи сообщений.
ECHO ON	Включает отображение вводимых символов
	(установлена по умолчанию).
ECHOOFF	Отменяет отображение вводимые символов.
	Отменена при работе через соединение RS-485.
MESSAGE message_number	Если количество сообщений не определено, FS11
	отображает сообщения по умолчанию без фреймов
	передачи.
MESSAGE ALL	FS11 отображает все сообщения.
HELP command	Команда HELP выдает список доступных команд. С
	помощью команды HELP с именем какой-либо
	команды, переданной в качества параметра, можно
	получить информацию об этой команде.
STATUS [CHECK]	Распечатывает сообщение о статусе, с
	дополнительными параметрами СНЕСК,
	распечатывает короткие сообщения о проверке
	статуса.
PARAMETERS	Распечатывает параметры конфигурации.
SET MESSAGE TYPE message_number	Выбирает тип передаваемого сообщения.
SET MESSAGE TYPE MITRAS	Выбирает режим эмуляции MITRAS Single Base.
	Сообщение с данными, фреймы сообщения и
	формат запроса устанавливаются такими же, как у
	трансмиссометра Vaisala MITRAS.
SET MESSAGE TYPE MITRAS_DB	Выбирает режим эмуляции MITRAS Double Base.
	Сообщение с данными, фреймы сообщения и
	формат запроса устанавливаются такими же, как у
	трансмиссометра Vaisala MITRAS.
SET MESSAGE TYPE FD12MSG2	Выбирает режим эмуляции сообщений 2 FD12.
	Сообщение с данными, фреимы сообщения и
	формат запроса устанавливаются такими же, как у
	датчика видимости Valsala FD12.
SET MESSAGE TYPE FD12MSG7	Выбирает режим эмуляции сообщении 7 FD12.
	Сообщение с данными, фреимы сообщения и
	формат запроса устанавливаются такими же, как у
SET MESSACE INITED//AL number	Датчика погоды FDT2F.
SET MESSAGE INTERVAL NUMBER	сокуштах. Новь отключает автоматическию
SET MESSAGE PORT DATA	Сообщение направляется в порт данных (по
SET MESSAGE PORT MAINTENANCE	Сообщение направляется в порт обслуживания
SET MESSAGE PORT MODULE	Сообщения направляются в дополнительный
	коммуникационный модуль. например. в модемный
	МОДУЛЬ.
SET UNIT ID id	Устанавливается идентификатор блока: Допустима
_	буквенно-цифровая строка. В зависимости от типа
	настраиваемого сообщения, первые символы
	используются для идентификации сообщений и
	запросов. Символ «-» удаляет ID. По умолчанию ID
	не установлен, и в заголовках сообщений на месте
	идентификатора отображается один пробел.
SET NAME name	Устанавливается имя: буквенно-цифровая строка,
	которая может использоваться во время
	инсталляции, для определения, например,

Табл. 9. Команды FS11 уровня пользователя

Команда	Описание
	местоположения блока. Строка не должна
	содержать пробелов.
SET DATA PORT BAUD number ves/no	Устанавливается скорость последовательной
	передачи в диапазоне 30019 200 бод. Окно
	диалога подтверждения да/нет открывается только в
	том случае, если команда дается через порт данных
	(по умолчанию 9600).
SET DATA_PORT MODE RS-232	Используется последовательная линия RS-232 без
NO_FLOW_CNTR yes/no	контроля потока. Окно диалога подтверждения
	да/нет открывается только в том случае, если
	команда дается через порт данных (по умолчанию).
SET DATA_PORT MODE RS-232	Используется последовательная линия RS-232 с
HW_FLOW_CNTR yes/no	контролем потока RTS и CTS. В этом режиме RTS
	сообщает «Ready for Receiving» (готов к приему) и
	может быть использован для контроля потока
	данных. Окно диалога подтверждения да/нет
	открывается только в том случае, если команда
	дается через порт данных.
SET DATA_PORT MODE RS-232	Используется последовательная линия RS-232 с
HW_TRANSMIT_CNTR yes/no	контролем потока RIS и CIS. В этом режиме RIS
	сообщает «Request to Send» (запрос на отправку) и
	может быть использован для контроля модемнои
	несущеи. Окно диалога подтверждения да/нет
	открывается только в том случае, если команда
	Дается через порт данных.
SET DATA_PORT MODE RS-485 yes/no	используется последовательная линия КS-485.
	полько в том случае, если команда дается через
SET DATA PORT PARITY 7E1 ves/no	Порт дапных. Используются последовательные пинии RS-232 и
	RS-485 со спелующими параметрами перелачи: 7
	бит ланных четность 1 стоповый бит Окно лиапога
	полтвержления ла/нет открывается только в том
	случае, если команда дается через порт данных (по
	умолчанию).
SET DATA PORT PARITY 8N1 ves/no	Используются последовательные линии RS-232 и
	RS-485 со следующими параметрами передачи: 8
	бит данных, без проверки четности, 1 стоповый бит.
	Окно диалога подтверждения да/нет открывается
	только в том случае, если команда дается через
	порт данных.
SET MODULE MODEM V21 ANSWER	Модемный режим 300 бит/с, режим ANSWER
yes/no	(ответ). Окно диалога подтверждения да/нет
	открывается только в том случае, если команда
	дается через порт данных.
SET MODULE MODEM V21 ORIGINATE	Модемный режим 300 бит/с, режим ORIGINATE
yes/no	(запрос). Окно диалога подтверждения да/нет
	открывается только в том случае, если команда
	дается через порт данных.
SET MODULE MODEM V21 ANSWER_NC	Модемный режим 300 бит/с, режим ANSWER
yes/no	(ответ), отсутствие резервной несущей. Несущая
	включается только на время передачи сообщения.
	Окно диалога подтверждения да/нет открывается
	только в том случае, если команда дается через
	порт данных.
SET MODULE MODEM V22 ANSWER	иодемныи режим 1200 бит/с, режим ANSWER

Команда	Описание
yes/no	(ответ). Окно диалога подтверждения да/нет
	открывается только в том случае, если команда
	дается через порт данных.
SET MODULE MODEM V22 ORIGINATE	Модемный режим 1200 бит/с, режим ORIGINATE
yes/no	(запрос). Окно диалога подтверждения да/нет
	открывается только в том случае, если команда
	дается через порт данных.
SET MODULE MODEM V22BIS ANSWER	Модемный режим 2400 бит/с, режим ANSWER
yes/no	(ответ). Окно диалога подтверждения да/нет
	открывается только в том случае, если команда
	дается через порт данных.
SET MODULE MODEM V22BIS	Модемный режим 2400 бит/с, режим ORIGINATE
ORIGINATE yes/no	(запрос). Окно диалога подтверждения да/нет
	открывается только в том случае, если команда
	дается через порт данных.
SET MAINTENANCE_PORT BAUD number	Устанавливается скорость сервисного порта
	последовательнои линии в диапазоне 3009600.
	Параметры передачи: 8N1 (фиксированы).
SET PORT_TIMEOUT number	устанавливается интервал времени в диапазоне
	030 минут, после которого происходит закрытие
	командного режима. О отменяет время ожидания,
	значение по умолчанию то мин.
SET TERMINAL_LINES NUMBER	настраивается количество строк, отооражаемых на
	экране терминала. Минимум 5 строк (по умолчанию
MEAS SYNC	24). Перезапуск измерительного шикла. Момент отправки
MEAS_STNC	перезапуск измерительного цикла. момент отправки
	Спелующее сообщение передается через (интервал
	+2) секунл
SYSTEM	Просмотр системных параметров: тип ID версия
	программного обеспечения и аппаратные молупи
	серийные номера.
NAME	Отображается тип устройства имя устройства.
	заданное пользователем, ID устройства.
VERSION	Просмотр списка версий программного обеспечения.

Команда	Описание
CALIBRATE WINDOW_CLEAN	Устанавливаются эталоны для контроля
VISIBILITY_SENSOR	загрязнения (и контроля обратного рассеяния) датчика FS11.
CALIBRATE WINDOW_CLEAN	Устанавливаются эталоны для контроля
BL_SENSOR	загрязнения (и контроля обратного рассеяния)
	датчика яркости фона.
CALIBRATE VISIBILITY calibration_value	Устанавливается калибровочное значение
	видимости, которое должно быть в интервале от 0
	до 10.
CALIBRATE VISIBILITY OFFSET	Устанавливается значение смещения для датчика
	видимости. Перед выдачей этой команды
	передатчик и приемник датчика видимости должны
	быть закрыты оптическими блокираторами.
	Оптические блокираторы входят в состав
	калибровочного комплекта FSA11.

Команда	Описание
CALIBRATE FS11	Инициирует управляемую процедуру калибровки датчика видимости. Эта процедура включает установку эталона для датчика видимости, определение смещения датчика видимости и калибровку видимости.
CALIBRATE TEMPERATURE EXTERNAL	Выполняется калибровка по одной точке с помошью
value	наружного датчика температуры, подключенного к интерфейсному блоку, значение должно быть в интервале от -99 до 99.
CALIBRATE TEMPERATURE INTERNAL value	Выполняется калибровка по одной точке с помощью стрелочного датчика температуры (FSM102), значение должно быть в интервале от -99 до 99.
CALIBRATE CHECK	Выполняется процедура калибровки, но калибровочные значения не изменяются. Распечатываются значения сигнала с текущими коэффициентами калибровки.
RESET yes/no	Аппаратный перезапуск схемой безопасности, открывается окно диалога подтверждения да/нет.
SIMULATE TEST_MESSAGE	Устанавливается фиксированный, предварительно определенный формат сообщения для передачи данных при тестировании системы. См. раздел Форматы сообщений на стр. 79.
SIMULATE MANUAL_MESSAGE string	Определяемый пользователем формат сообщения при тестировании системы.
SIMULATE OFF	Отмена режима отправки имитационного сообщения, возврат к нормальному рабочему режиму.
ELOG clear	Команда ELOG без параметра распечатывает журнал ошибок. С параметром CLEAR – очищает журнал ошибок.
SET MESSAGE SECOND TYPE message number	Выбирает тип сообщения, которое должно передаваться как вторичное.
SET MESSAGE SECOND TYPE MITRAS	Выбирает режим эмуляции MITRAS Single Base для вторичного сообщения. Сообщение с данными, фреймы сообщения и формат запроса устанавливаются такими же, как у трансмиссометра Vaisala MITRAS.
SET MESSAGE SECOND TYPE MITRAS_DB	Выбирает режим эмуляции MITRAS Double Base для вторичного сообщения. Сообщение с данными, фреймы сообщения и формат запроса устанавливаются такими же, как у трансмиссометра MITRAS.
SET MESSAGE SECOND TYPE FD12MSG2	Выбирает режим эмуляции FD12 message 2 для вторичного сообщения. Сообщение с данными, фреймы сообщения формат запроса устанавливаются такими же, как и у датчика видимости Vaisala FD12.
SET MESSAGE SECOND TYPE FD12MSG7	Выбирает режим эмуляции FD12 message 7 для вторичного сообщения. Сообщение с данными, фреймы сообщения и формат запроса устанавливаются такими же, как у датчика погоды FD12P.
SET MESSAGE SECOND PORT DATA	Вторичное сообщение направляется в порт данных.
SET MESSAGE SECOND PORT MAINTENANCE	Вторичное сообщение направляется в сервисный порт.
SET MESSAGE SECOND PORT MODULE	Вторичное сообщение направляется в

Команда	Описание
	дополнительный коммуникационный модуль,
	например, в модемный модуль.
SET MESSAGE SECOND PORT NONE	Вторичное сообщение направляется в любой порт
	(по умолчанию).
SET MESSAGE ACKNAK ON	Прием первичного сообщения должен быть
	подтвержден ASCII-кодом АСК (0х06). Если код АСК
	не принят в течение 500 мс после передачи
	последнего символа первичного сообщения, или
	был принят ASCII-код NAK (0x15), первичное
	сообщение повторяется. Первичное сообщение
	повторяется до двух раз.
SET MESSAGE ACKNAK OFF	Прием первичного сообшения должен быть
	подтвержден. (по умолчанию)
SET DATA PORT DATA PARITY STOP	Формат символов, передаваемых через порт
718 evenloddinone 112	ланных может быть залан. Возможны спелующие
	варианты выбора:
	Число бит ланных 7/8
	Тип бита четности:
	Чиспо стоповых бит: 1/2
SET DATA MAINTENANCE	
DATA PARITY STOP 718 evenlodding	
	порт, может овтв задан. Возможны следующие
1 2	варианты высора. Цисло бит поциску: 7/8
	Число онт данных. 770
SET CONTAMINATION COMPENSATION	
	Водится компенсационная поправка к значению
VISIBILITY_SENSOR ON	видимости на загрязнение стекла датчика
CET CONTAMINATION COMPENSATION	видимости (по умолчанию).
	Отменяется ввод компенсационной поправки.
	водится компенсационная поправка на загрязнение
BL_SENSUR UN	стекла датчика яркости фона (по умолчанию).
	Отменяется ввод компенсационнои поправки.
	D
SET BL_SENSOR LM21	Включается возможность запросов данных датчика
	яркости фона в системе FS11.
SET BL_SENSOR PHOTO_SWITCH	Включается возможность считывания показании
	фотопереключателя день/ночь.
SET BL_SENSOR OFF	Отключается возможность запросов данных датчика
	яркости фона и показаний фотопереключателя в
	системе FS11 (по умолчанию).
SET VIS_SENSOR ON	Включается возможность запросов данных датчика
	видимости в системе FS11 (по умолчанию).
SET VIS_SENSOR OFF	Отключается возможность запросов данных датчика
	видимости в системе FS11.
SET HOOD_HEATERS	Включается контроль и автоматическая работа
VISIBILITY_SENSOR ON	обогревателей колпака датчика видимости (по
—	умолчанию). Обогреватели колпака включаются,
	когда температура колпака опускается ниже
	установленного уровня.
SET HOOD HEATERS	Отключается контроль и автоматическая работа
VISIBILITY SENSOR OFF	обогревателей колпака датчика видимости
	Установите ОЕЕ при функционировании системы в
	условиях, когда нет неооходимости использовать

Команда	Описание
	обогрев и когда датчик питается только источника
	постоянного тока.
SET HOOD_HEATERS BL_SENSOR ON	Включается контроль и автоматическая работа обогревателя колпака датчика яркости фона (по умолчанию). Обогреватели колпака включаются, когда температура колпака опускается ниже установленного уровня.
SET HOOD_HEATERS BL_SENSOR OFF	Отключается контроль и работа обогревателя колпака датчика яркости фона. Установите OFF при функционировании системы в условиях, когда нет необходимости использовать обогрев и когда датчик питается только источника постоянного тока.
SET DEW_HEATER VISIBILITY_SENSOR ON	Включается контроль и автоматическая работа обогревателей, предотвращающих образование конденсата (по умолчанию). Обогрев оптических поверхностей включается, когда температура окружающего воздуха опускается ниже установленного уровня.
SET DEW_HEATER VISIBILITY_SENSOR OFF	Отключается контроль и автоматическая работа обогревателей, предотвращающих образование конденсата. Отключение производится при работе системы в условиях, когда нет необходимости использовать эти обогреватели (температура окружающего воздуха не опускается ниже 12 °C).
SET DEW _HEATER BL_SENSOR ON	Включается контроль и автоматическая работа обогревателей, предотвращающих образование конденсата (по умолчанию). Эти нагреватели начинают подогревать оптические поверхности, когда температура окружающего воздуха опускается ниже установленного уровня.
SET DEW _HEATER BL_SENSOR OFF	Отключается контроль и автоматическая работа обогревателей, предотвращающих образование конденсата. Отключение производится при работе системы в условиях, когда нет необходимости использовать эти обогреватели (температура окружающего воздуха не опускается ниже 12 °C).
SET MESSAGE FRAME ON	Фреймы сообщений включаются в передачу сообщений (по умолчанию).
SET MESSAGE FRAME OFF	Фреймы сообщений не включаются в передачу сообщений.
SET +12VOUT ON	Активируется выход +12 В на плате FSC202.
SET +12VOUT OFF	Отключается выход +12 В на плате FSC202 (по умолчанию)
SET DEFAULTS yes/no	Восстанавливаются заводские настройки, открывается окно диалога подтверждения да/нет.

Завершение команды

При вводе команд пользователю достаточно помнить лишь несколько первых букв команды, и система способна автоматически распознать команду и ее параметры. Это возможно при условии, что вводимые пользователем буквы однозначно определяют команду или ее параметр.

Если система не может распознать вводимую команду, появляется следующая информация:

- если система на может подобрать правильное окончание команды по введенным пользователем первым буквам, ответ системы будет: COMMAND NOT FOUND
- если введенные пользователем первые буквы команды не могут быть идентифицированы как команда, система предлагает список подходящих команд; новая подсказка системы включает введенные пользователем буквы, что позволяет ему завершить команду, используя список подходящих команд.
- если введенные пользователем первые буквы распознаются, но параметры введены неполностью, неоднозначны или неприемлемы по какой-либо иной причине, система выдает справочный текст; новая подсказка системы включает введенные пользователем буквы вплоть до первого параметра, требующего разъяснения. Это позволяет пользователю ввести команду с правильными параметрами. Подсказка содержит информацию только о тех параметрах, которые соответствуют команде, введенной пользователем.

Настройка количества строк, отображаемых на экране терминала

Распечатка ответов на вводимые команды может быть настроена в соответствии с размером экрана сервисного терминала. Эта функция позволяет останавливать распечатку каждый раз, когда экран заполняется. Это особенно полезно, когда в качестве сервисного терминала используется карманный компьютер с маленьким экраном. В противном случае пользователь сможет увидеть только верхние строки некоторых сообщений, например, таких длинных, как STATUS.

Настройка размера терминала выполняется с помощью команды

SET TERMINAL_LINES number

В стандартной программе терминала на ПК предусматривается 24 видимых строки. Это и есть значение данного параметра по умолчанию. Минимальное значение – 5 строк. Значение этого параметра не влияет на сообщения, посылаемые в ответ на команды, задаваемые в формате запроса.

Запрос команды

Все команды могут выполняться без открытия командной строки. Эта функция может быть реализована в компьютере, например, для автоматического запроса сообщений об активных предупреждениях или сигналах тревоги.

Общий формат запроса команды (где А – идентификатор блока):

```
!FSA∀&DO COMMAND-#CSUM∃-*
```

где

! FS A	 Начало заголовка (ASCII 1) Идентификатор датчика FS11 Первый символ идентификатора (ID) блока, если ID не определен, он
∀ &DO COMMAND	замещается пробелом = Начало текста (ASCII 2) = Тело команды
#	= Конец текста (ASCII 3)
CSUM	= Контрольная сумма CRC16
	= Возврат каретки (ASCII 13)
*	= Перевод строки (ASCII 10)

Ответ на данную команду выглядит аналогично:

!FSA∀FS11 RESPONSE#CSUM∃-*

Контрольная сумма CSUM рассчитывается по методу CRC16 (см. раздел Контрольная сумма CRC16 на стр. 178).

Например, команда

!FSA∀&DO STATUS-#036B∃-*

распечатывает сообщения о состояниях в фреймах (равных сообщению 3), в то время как команда

!FSA∀&DO MEAS_SYNC-#44DA∃-*

перезапускает измерения. Команда

!FSA∀&DO NAME-#28D4∃-*

выводит на дисплей тип устройства, имя устройства, заданное пользователем, и ID.

Команда

!FSA∀&DO SYSTEM-#6EEE∃-*

выдает список с системной информацией, такой как тип, ID, версия программного обеспечения, аппаратные модули, серийные номера.

Форматы сообщений

В командном режиме (установленном с помощью команды **OPEN**) сообщения датчика FS11 могут отображаться в ответ на команду **MESSAGE.** В независимом режиме (установленном с помощью команды **CLOSE**), датчик FS11 может запрашиваться или автоматически передавать предварительно определенные сообщения через выбранные интервалы времени. Можно выбрать любой из девяти предлагаемых форматов сообщений. По умолчанию датчик FS11 добавляет строку фрейма ко всем передаваемым по запросу и автоматическим сообщения. В запросе может содержаться просьба выбрать тип сообщения: автоматическое (по умолчанию) или какое-либо другое (с номером сообщения).

Если датчик FS11 используется как часть системы RVR, он может эмулировать сообщения в формате трансмиссометра MITRAS (с однобазовым или двухбазовым измерением), датчика видимости FD12 и датчика погоды FD12P производства фирмы Vaisala.

Для получения более подробной информации об эмулируемых типах сообщений обратитесь к разделам Эмуляция FD12 на стр. 89 и Эмуляция MITRAS на стр. 92 Датчик FS11 может также воспринимать запросы типа MITRAS и FD12, посылаемые RVR-компьютером при включенном режиме эмуляции.

Команда MESSAGE

Команда **MESSAGE** используется для отображения сообщений. Команда **MESSAGE** имеет следующий формат:

MESSAGE Message_number

Если номер сообщения не указан, FS11 отображает сообщение по умолчанию. Сообщение по умолчанию – это сообщение, которое было выбрано для автоматического режима или для режима запроса с помощью команды **SET MESSAGE TYPE.**

ВАЖНО При отображении сообщения с помощью команды MESSAGE фреймы сообщений для просмотра не выводятся.

Все фреймы сообщений заканчиваются символами –###, которые обозначают возврат каретки и перевод строки. Этот символ используется также в многострочных сообщениях в качестве разделителя строк.

Содержание сообщений описано в последующих разделах.

Сообщение 1, FS11

Сообщение 1 – это сообщение с фиксированной длиной, в которое включены значения коэффициента ослабления и яркости фона. Это сообщение имеет следующий формат:

IFSA∀EXT 0.85 AL 0 ALS 8746 AL 0#CSUM∃-*

где

где		
!	=	Начало заголовка (ASCII 1)
FS	=	Идентификатор датчика FS11
А	=	Первый символ идентификатора (ID) блока, если
		ID не определен, он замещается пробелом
\forall	=	Начало текста (ASCII 2)
EXT 0.85		Идентификатор коэффициента ослабления и
		значение коэффициента ослабления, в км ⁻¹ ,
		среднее за 1 минуту
AL 0		Аварийный статус датчика видимости
ALS 8746		Идентификатор яркости фона и значение яркости
		фона в фут-ламбертах. 1 фут-ламберт равен 1 / π
		кандела на кв. фут или 3,426 кд/м ²
AL 0		Аварийный статус датчика яркости фона
#		Конец текста (ASCII 3)
CSUM		Контрольная сумма CRC16
Э		Конец передачи (ASCII 4)
-*		CR + LF (ASCII 13 + ASCII 10)
~ ~		

Общее число символов в сообщении равно 43. Время передачи: 1,5 с при 300 бит/с (10-битный символ), 0,19 с при 2400 бит/с, 0,05 с при 9600 бит/с.

Коды аварийного статуса

Коды аварийного статуса датчика приведены в Табл. 11. ниже

Код	Пояснение	Причины
W	Предупреждение (измеренные значения видимости все еще действительны и отображаются)	-Загрязнение окна возросло -Срок службы индикатора передатчика близок к завершению -Низкое напряжение резервной батареи
E	Ошибка (измеренные значения видимости НЕ отображаются, вместо них идут символы ////)	-Датчик отсутствует -Ошибка памяти
A	Тревога (измеренные значения видимости НЕ отображаются, вместо них идут символы ////)	-Коммуникационная ошибка в датчике -Аварийное значение внутреннего мониторинга превысило максимально допустимое -Измеренный сигнал достиг насыщения или превысил максимально допустимый диапазон -Измерения температуры поверхности не выполнены
1	Индикация ненормальной ситуации (измеряемые значения достоверны и отображаются)	-Питание (перем. тока) отключено, прибор питается от резервной батареи -Короткое замыкание на выходе 12 В пост. тока -Проблемы с колпаком или с противоконденсатным обогревом
0 (ноль)	Аварий и предупреждений нет (аварийный сигнал выключен)	

Табл. 11. Коды аварийного статуса

Сообщение 2, FS11 с LM21

Сообщение 2 – это сообщение с фиксированной длиной в которое включены значения видимости и яркости фона. Сообщение 2 имеет следующий формат:

!FSA∀VIS 02000 AL 0 BL 01000 AL 0#CSUM∃-*

где

!	=	Начало заголовка (ASCII 1)
FS	=	Идентификатор датчика FS11
А	=	Первый символ идентификатора (ID) блока, если
		ID не определен, он замещается пробелом
\forall	=	Начало текста (ASCII 2)
VIS 02000	=	Идентификатор видимости и значение MOR, в
		метрах (единицы СИ), осредненное за 1 минуту
AL 0	=	Аварийный статус датчика видимости
BL 01000	=	Идентификатор яркости фона и значение яркости
		фона, кд/м ²
AL 0	=	Аварийный статус датчика яркости фона
#	=	Конец текста (ASCII 3)
CSUM	=	Контрольная сумма CRC16
Э	=	Конец передачи (ASCII 4)
-*	=	CR + LF (ASCII 13 + ASCII 10)

Общее число символов в сообщении равно 41. Время передачи: 1,4 с при 300 бит/с (10-битный символ), 0,17 с при 2400 бит/с, 0,042 с при 9600 бит/с.

Для расшифровки кодов аварийного статуса см. Табл. 11. на стр. 82.

Если к интерфейсному блоку подключен только датчик яркости фона LM21, рекомендуется отключить датчик видимости с помощью команды расширенного уровня **SET VIS_SENSOR OFF**. Если датчик видимости не отключен, значение видимости отсутствует, и код аварийного статуса: Е (ошибка). Сообщение, передаваемое когда к интерфейсному блоку подключен только датчик LM21, но датчик видимости не отключен, выглядит следующим образом:

!FSA∀VIS //// AL E BL 01000 AL 0#CSUM∃-*

Если для датчика яркости фона LM21 был настроен режим запроса, и код аварийного статуса Е, это может означать, что датчик LM21 отсутствует или обнаружена ошибка памяти EEPROM датчика LM21.

Сообщение 3, сообщение о статусе

Сообщения о статусе содержат результаты встроенных тестов самодиагностики системы. Результаты внутренней самодиагностики системы представляют собой цифровые значения, которые могут быть запрошены с помощью команды **STATUS.** Краткое сообщения о статусе, которое содержит лаконичный, ясный словесный отчет о состоянии системы, может быть запрошено с помощью команды **STATUS CHECK.** См. раздел

Сообщения о статусе датчика FS11 на стр. 123.

Пример сообщения о статусе:

!FSA∀FS11 SYSTEM STATUS: OK Measurement unit: OK Receiver: Window cont: 0 backscatter: 35 DC saturation: 0 offset: -0.09 Image: CransmitterUWindow cont:00162 Transmitter: 0 backscatter: 8 Contamination compensation: ON Temperatures (unit C): surface: 22.8 CPU: 27.8 RX: 27.3 TX: 29.3 hood RX: 20.3 Hood TX: 21.0 Voltages: +12V: 11.4 -12V:-11.3 VB: 12.5 VR: 6.7 Heater status: Hood TX: OFF, hood RX: OFF, dew: OFF Interface unit: OK Temperatures (unit C): CPU: 27.1, external: ///// Humidity: //// Voltages: +12V: 12.1 +12Vout: 0.0 PVin: 23.8 V5I: OFF Background luminance sensor: OK Window cont: 10 Contamination compensation: ON Backscatter: 0 CPU: 26.2 hood: 24.6 Heater status: hood: OFF, dew: OFF V5iso: ON #CSUM3-*

где		
!	=	Начало заголовка
FS	=	Идентификатор датчика FS11
А	=	Первый символ идентификатора (ID) блока,
		если ID не определен, он замещается
		пробелом
\forall	=	Начало текста
MESSAGE	BODY	
#		Конец текста
CSUM		Контрольная сумма CRC16
Э		Конец передачи
-*		CR + LF

Объяснение параметров, используемых в теле сообщения, приведено в разделе Сообщения о статусе датчика FS11 на стр. 123.

Для расшифровки кодов аварийного статуса см. Табл. 11. на стр. 82.

Число символов в этом сообщении непостоянно и зависит от конфигурации и статуса системы FS11. Общее число символов может достигать 1400. Для передачи 1400 символов требуется 47 с при 300 бит/с (10-битные символы), 5,8 с при 2400 бит/с, 1,5 с при 9600 бит/с.

Сообщение 4, нескомпенсированные значения

Сообщение 4 содержит значения видимости как с введенной поправкой на загрязнение окна, так и нескомпенсированные значения, а также измеренные значения яркости фона. Сообщение 4 содержит значения видимости, осредненные за 3 и 10 минут. Это сообщение имеет следующий формат:

!FSA∀VIS 02100 VUC 02100 VIS3M 02000 VIS10M 01900 AL 0 BL 01050 BUC 01050 AL 0#CSUM∃-*

где

!	=	Начало заголовка
FS	=	Идентификатор датчика FS11
А	=	Первый символ идентификатора (ID)
		блока, если ID не определен, он
		замещается пробелом
\forall	=	Начало текста
VIS 02100	=	Идентификатор видимости и значение
		MOR, в метрах (единицы СИ),
		осредненное за 1 минуту
VUC 02100	=	Идентификатор нескомпенсированного
		значения видимости и
		нескомпенсированное значение MOR
VIS3M 02000	=	Идентификатор видимости и значение
		видимости MOR, осредненное за 3
		минуты
VIS10M 01900	=	Идентификатор видимости и значение
		видимости MOR, осредненное за 10
		минут
AL 0	=	Аварийный статус датчика видимости
BL 01050	=	Идентификатор яркости фона и значение
		яркости фона, кд/м ²
BUC 01050	=	Идентификатор нескомпенсированного
		значения яркости фона и
		нескомпенсированное значение яркости
		фона
AL 0	=	Аварийный статус датчика яркости фона
#	=	Конец текста
CSUM	=	Контрольная сумма CRC16
Э	=	Конец передачи
	=	CR + LF

Количество символов в сообщении - 86. Время передачи: 2,86 с при 300 бит/с (10-битный символ), 0,36 с при 2400 бит/с, 0,090 с при 9600 бит/с.

Для расшифровки кодов аварийного статуса см. Табл. 11. на стр. 82.

Сообщение 5 определено в соответствии со стандартным форматом системы Vaisala. Единицы измерения значений в сообщении являются единицами СИ. Это сообщение имеет следующий формат:

!FSA∀VIS(02000(AL(0)))BL(00100(AL(0)))#CSUM∃-*

где

!	=	Начало заголовка
FS	=	Идентификатор датчика FS11
А	=	Первый символ идентификатора (ID) блока,
		если ID не определен, он замещается
		пробелом
\forall	=	Начало текста
VIS(02000(AL(0)))	=	Идентификатор видимости, значение MOR
		(в метрах, осредненное за 1 минуту) и
		аварийный статус, относящийся к значению
		видимости
BL(00100(AL(0)))	=	Идентификатор яркости фона, значение
		яркости фона (в кд/м ²) и аварийный статус,
		относящийся к значению яркости фона
#	=	Конец текста
CSUM	=	Контрольная сумма CRC16
Э	=	Конец передачи
		—

Для расшифровки кодов аварийного статуса см. Табл. 11. на стр. 82.

Эмуляция FD12

Для совместимости на системном уровне датчик FS11 также поддерживает формат сообщений, фреймы и формат запросов датчика видимости Vaisala FD12 и датчика погоды Vaisala FD12P. Формат запросов датчиков FD12/FD12P принимается только при условии, что выбран режим эмуляции сообщений FD12/FD12P. Формат запросов FD12/FD12P имеет следующий вид:

%FD id message_number-

Параметр message_number относится к номеру сообщения FD.

FD12 сообщение 2

Режим эмуляции сообщения 2 FD12 выбирается с помощью команды **SET MESSAGE TYPE FD12MSG2**.

Формат имитируемого сообщения номер 2 датчика Vaisala FD12 приведен ниже:

```
!FD A∀00 1810 1353 //// // ////#-*
где
!
                   = Начало заголовка
FD
                   = Идентификатор датчика FS11
                   = Первый символ идентификатора (ID) блока,
А
                      если ID не определен, он замещается
                      пробелом
                      Начало текста
A
                   =
Первое число
                   = Статус данных
                      0 = нормальные, допустимые пределы FD12
                      не поддерживаются
                   =
                      Аппаратный статус
Второе число
                      0 = OK
                      1 = Тревога (данные отсутствуют, см
                      сообщение STATUS)
                      2 = Предупреждение (см сообщение
                      STATUS)
1810
                      Видимость в метрах, усредненная за 1
                   =
                      минуту (макс. 50 000 м)
                      Видимость в метрах, усредненная за 10 мин
1353
                   =
                      Зарезервировано
////
                   =
//
                      Зарезервировано для опций
                   =
/////
                      Зарезервировано для опций
                   =
```

= Конец текста

Общее количество символов в сообщении – 40. Время передачи: 1,3 с при 300 бит/с (10-битный символ), 0,17 с при 2400 бит/с, 0,04 с при 9600 бит/с.

FD12P сообщение 7

Режим эмуляции сообщения 7 датчика FD12P выбирается с помощью команды SET MESSAGE TYPE FD12MSG7.

Формат имитируемого сообщения номер 7 датчика Vaisala FD12P приведен ниже:

```
//// 23.3 01000-*
#_*
где
1
                 =
                     Начало заголовка
FD
                 =
                     Идентификатор датчика FS11
                     Первый символ идентификатора (ID)
А
                 =
                     блока, если ID не определен, он
                     замещается пробелом
                 =
                     Начало текста
Α
Первое число
                 =
                     Статус данных
                     0 = нормальные, допустимые пределы
                     FD12 не поддерживаются
                     Аппаратный статус
Второе число
                 =
                     0 = OK
                     1 = Тревога
                     2 = Предупреждение
22848
                     Видимость в метрах, усредненная за 1
                 =
                     минуту (мах. 75 000 м)
24807
                     Видимость в метрах, усредненная за 10
                 =
                     минут (мах. 75 000 м)
23.3
                 =
                     Температура TS
01000
                 =
                     ЯФ кд/м2
                 =
                     Конец текста
#
```

Общее количество символов в сообщении – 74. Время передачи: 2,5 с при 300 бит/с (10-битный символ), 0,31 с при 2400 бит/с, 0,08 с при 9600 бит/с.

Сообщение 7 состоит из четырех строк. Датчик FD12P использует вторую и третью строки для кодов METAR. Датчик видимости FS11 не предоставляет коды METAR при эмуляции FD12P сообщения 7. Коды METAR опущены, но строки сообщения завершаются символами возврата каретки и перевода строки.

Значение температуры TS будет отображаться в градусах Цельсия только в том случае, если внешний элемент РТ100 подсоединен к FSI102. Если внешний элемент РТ100 не подсоединен к FSI102, значение температуры TS будет представляться пятью левыми косыми чертами (////).

Измеренное значение яркости фона отображается в кд/м² только в том случае если датчик яркости фона Vaisala LM21 интегрирован в датчик FS11. Если используется переключатель день/ночь, значение яркости фона отображает состояние переключателя (1 =день, 0 =ночь).

Эмуляция MITRAS

Для совместимости на системном уровне датчик FS11 также поддерживает формат сообщений номер 6, фреймы и формат запросов трансмиссометра Vaisala MITRAS. Формат запросов датчика MITRAS распознается только при выбранном режиме эмуляции MITRAS.

Запрос MITRAS имеет следующий формат:

P<Space><ID>-*.

Однобазовый вариант MITRAS

Режим эмуляции однобазового варианта MITRAS может быть выбран с помощью команды **SET MESSAGE TYPE MITRAS.** Сообщение имитируемого трансмиссометра MITRAS приведено ниже:

∀ID 1 V 4550 B ///// S0101 -*#

\forall	=	Начало текста
ID	=	ID (идентификатор)
1	=	ID блока (только один символ)
V	=	Заголовок видимости
4550	=	Видимость в метрах, усредненная за 1 мин
В	=	Заголовок яркости фона
/////	=	Значение яркости фона
S	=	Заголовок статуса
01 (первый)	=	Статус передатчика
01 (второй)		Статус приемника 1
#		Конец текста

Общее количество символов в сообщении – 33. Время передачи: 1,3 с при 300 бит/с (10-битный символ), 0,17 с при 2400 бит/с, 0,04 с при 9600 бит/с.

Двоичный статус в шестнадцатеричном представлении. Биты статуса имитируют статус датчика MITRAS следующим образом.

Соответствие статусов передатчика датчиков MITRAS и FS11:

	BIT	MITRAS	FS11
	BIT.0=1	MEAS MODE (режим	ON (вкл.)
		MEAS)	
II	BIT.1=2	CONT/OTHER	ОFF (выкл.
	BIT.2=4	OPTICAL SURFACE	Загрязнение окна
		(оптическая поверхность)	
	BIT.3=8	POWER SUPPLY (источник	Неисправность источника
		питания)	питания
	BIT.4=1	HEATING (подогрев)	OFF (выкл.)
I	BIT.5=2	FLASH LAMP	Неисправность индикатора
	BIT.6=4	BL METER	Статус датчика ЯФ
			(ON/OFF)
	BIT.7=8	MEASUREM. LOOP	ОFF (выкл)
		SIGNAL	

Соответствие статусов приемников датчиков MITRAS и FS11:

	BIT	MITRAS	FS11
	BIT.0=1	MEAS MODE	ON
IV	BIT.1=2	CONT/OTHER	Любая другая авария FS11
	BIT.2=4	OPTICAL SURFACE	OFF
	BIT.3=8	POWER SUPPLY	OFF
	BIT.4=1	HEATING	OFF
Ш	BIT.5=2	CALIBRATION	Приемник насыщен
	BIT.6=4	TEST	OFF
	BIT.7=8	CONSISTENCY	OFF

Например, статус 4101 обозначает, что

- I 4 = BL sensor ON II 1 = ON
- IV 1 = ON

Другими словами, датчик яркости фона LM21 настроен как датчик яркости фона.

Двухбазовый вариант MITRAS

Режим эмуляции двухбазового варианта MITRAS может быть выбран с помощью команды **SET MESSAGE TYPE MITRAS_DB.** Сообщение имитируемого трансмиссометра MITRAS приведено ниже:

Общее количество символов в сообщении – 33. Время передачи: 1,3 с при 300 бит/с (10-битный символ), 0,17 с при 2400 бит/с, 0,04 с при 9600 бит/с.

Двоичный статус в шестнадцатеричном представлении. Биты статуса имитируют статус датчика MITRAS следующим образом.

Соответствие статусов передатчика датчиков MITRAS и FS11:

	BIT	MITRAS	FS11
	BIT.0=1	MEAS MODE	ON
П	BIT.1=2	CONT/OTHER	OFF
	BIT.2=4	OPTICAL SURFACE	Загрязнение окна
	BIT.3=8	POWER SUPPLY	Неисправность источника
			питания
	BIT.4=1	HEATING	OFF
1	BIT.5=2	FLASH LAMP	Неисправность индикатора
	BIT.6=4	BL METER	Статус датчика ЯФ
			(ON/OFF)
	BIT.7=8	MEASUREM. LOOP	OFF
		SIGNAL	

	BIT	MITRAS	FS11
	BIT.0=1	MEAS MODE	ON
IV	BIT.1=2	CONT/OTHER	Любая другая авария FS11
	BIT.2=4	OPTICAL SURFACE	OFF
	BIT.3=8	POWER SUPPLY	OFF
	BIT.4=1	HEATING	OFF
111	BIT.5=2	CALIBRATION	Приемник насыщен
	BIT.6=4	TEST	OFF
	BIT.7=8	CONSISTENCY	OFF

Соответствие статусов приемника 1 датчиков MITRAS и FS11:

Соответствие статусов приемника 2 датчиков MITRAS и FS11:

	BIT	MITRAS	FS11
	BIT.0=1	MEAS MODE	ON
VI	BIT.1=2	CONT/OTHER	Любая другая авария FS11
	BIT.2=4	OPTICAL SURFACE	OFF
	BIT.3=8	POWER SUPPLY	OFF
	BIT.4=1	HEATING	OFF
V	BIT.5=2	CALIBRATION	Приемник насыщен
	BIT.6=4	TEST	OFF
	BIT.7=8	CONSISTENCY	OFF

Режимы передачи сообщений

Сообщения FS11 могут либо передаваться автоматически через заранее установленные интервалы времени, либо запрашиваться командами или строками запросов через интервалы времени, определяемые управляющим компьютером.

Автоматический режим

В автоматическом режиме датчик FS11 передает предопределенное сообщение через выбранные интервалы времени. Тип сообщения, передаваемого как в автоматическом режиме, так и в установленном по умолчанию режиме запроса может быть выбран с помощью команды **SET MESSAGE TYPE.** Для получения более подробной информации о возможных типах сообщений обратитесь к разделу Форматы сообщений на стр. 79. Команда **SET MESSAGE TYPE** имеет следующий формат:

SET MESSAGE TYPE *Message_number*

Команда, приведенная ниже, выбирает «Сообщение 2» в качестве сообщения, передаваемого по умолчанию автоматически:

SET MESSAGE TYPE 2

Интервал передачи сообщений в автоматическом режиме устанавливается с помощью команды **SET MESSAGE INTERVAL.** Интервал передачи сообщений задается в секундах. Интервал, равный 0, отменяет автоматическую передачу сообщений и используется в режиме передачи сообщений по запросу. Эта команда имеет следующий формат:

SET MESSAGE INTERVAL Message_interval

Команда, приведенная ниже, устанавливает темп передачи сообщений один раз в минуту:

SET MESSAGE INTERVAL 60

Команда, приведенная ниже, отменяет автоматическую передачу сообщений:

SET MESSAGE INTERVAL 0

Номер автоматического сообщения является одновременно номером по умолчанию для команды и запроса MESSAGE.

Подтверждение АСК/NAK

В автоматическом режиме систему FS11 можно настроить таким образом, чтобы она требовала подтверждения для приема сообщения от получателя сообщения. По умолчанию подтверждение ACK/NAK отключено. Команда **SET MESSAGE ACKNAK** имеет следующий формат:

SET MESSAGE ACKNAK ON|OFF

Подтверждение ACK/NAK включается с помощью команды SET MESSAGE ACKNAK ON. После передачи последнего символа сообщения система FS11 ожидает подтверждения ACK/NAK в течение 500 мс. Если за это время FS11 получает ACK-символ (ASCII 06), отправка сообщения будет продолжаться в соответствии с настройкой, выполненной по команде SET MESSAGE INTERVAL. Если система FS11 получает NAK-символ (ASCII 16) в течение 500 мс, отправка сообщения будет немедленно повторена. Если система FS11 в течение 500 мс не получает ни ACK-символа, ни NAK-символа, отправка сообщения будет повторена. Повторная отправка сообщения в ответ на получение NAK-символа или при отсутствии подтверждающих символов производится только два раза. В дальнейшем отправка сообщений продолжается в соответствии с заданным темпом. Периоды времени, выделяемые для повтора сообщений, не пересекаются с заданным интервалом времени между сообщениями.

Подтверждение ACK/NAK отключается с помощью команды SET MESSAGE ACKNAK OFF.

Режим запроса

В режима запроса датчик FS11 передает сообщения с данными только в ответ на команду запроса от хост-компьютера. Режим автоматической передачи сообщений отменяется путем задания нулевого значения для интервала передачи сообщений с помощью команды:

SET MESSAGE INTERVAL 0

Команда запроса имеет следующий формат:

%FS<id>< message number> -

где

%	=	ASCII-символом номер 5 (Ctrl E)
FS	=	Идентификатор FS
id	=	Идентификатор, выбранный в конфигурации,
		который будут включать в ответ все датчики FS11,
		подключенные к линии, если этот идентификатор
		замещен пробелом
message	=	Дополнительный идентификатор сообщения (два
number		символа), с которым датчик передает сообщение по
		умолчанию, выбранное с помощью команды SET
		MESSAGE TYPE, если номер сообщения опущен
_	=	CR (ASCII 13)

Примеры команд запроса:

%FS –	=	Если только один блок FS11 подключен к линии
		(ID не требуется)
%FSA0	=	Запрос датчику FS11 A (ID = A) на передачу
3-		сообщения номер 03 (сообщение о статусе). Такой
-		формат сообщений используется в случае если к
		одной линии подключено несколько датчиков.

Датчик FS11 не отображает строку символов запроса.

Если несколько датчиков подключены к одной модемной линии запрошенное устройство включает несущую модема (опция

DMX501) после того, как оно подтвердило запрос. Включение несущей вызовет добавление дополнительных символов перед первым символом сообщения. После включения несущей датчик FS11 выжидает примерно 100 мс перед отправкой сообщения. После отправки сообщения датчик FS11 отключает несущую, передавая еще несколько символов, которые также должны игнорироваться хост-компьютером.

При включенном режиме эмуляции FD12, FD12P или MITRAS (выбраны типы сообщения FD12MSG2, FD12MSG7, MITRAS, MITRAS_DB) датчик FS11 не реагирует на запрос, посланный с помощью вышеупомянутой команды, а отвечает на запросы, посланные в форматах FD12, FD12P и MITRAS соответственно.

Вторичное сообщение

Может быть отправлено второе предварительно определенное сообщение. Второе сообщение определяется с помощью команды **SET MESSAGE SECOND TYPE** *message_type*. Возможны такие же сообщения, как для стандартного автоматического режима.

Интервал времени между первым и вторым сообщениями всегда совпадает с интервалом для стандартного сообщения. Для вторичного сообщения нельзя установить индивидуальный интервал. Вторичное сообщение всегда передается после стандартного сообщения.

Если автоматический режим отключен и вместо него установлен режим запроса, вторичное сообщение передается во всех случаях, когда запрашивается стандартное сообщение. Вторичное сообщение нельзя запросить индивидуально или отдельно.

Если в автоматическом режиме включено подтверждение ACK/NAK, вторичное сообщение передается во всех случаях, когда отправлено стандартное сообщение. Таким образом, если требуется повторить стандартное сообщение, вторичное сообщение будет также повторено. Ко вторичному сообщению подтверждение ACK/NAK неприменимо.

Вторичное сообщение может быть перенаправлено в любой доступный порт с помощью команды SET MESSAGE SECOND **PORT** *message_type*. Параметр *message_port* может быть таким же, как в командах DATA, MODULE или MAINTENANCE. Для отмены рассылки вторичного сообщения параметру *message_port* необходимо присвоить значение NONE.

Конфигурация системы

Команда **SET** используется для установки или обновления системных коммуникационных параметров, а также параметров, относящихся к интерфейсу пользователя.

Команда **CALIBRATE** используется для установки или обновления калибровки измерений видимости, загрязнения окна и температуры. Команда **CALIBRATE** доступна только для пользователей, обладающих правами администратора системы. Для получения более подробной информации о процедуре калибровки обратитесь к разделу Калибровка FS11 на стр. 143.

С помощью команды **PARAMETERS** можно распечатать текущие параметры системы Результат выглядит следующим образом:

```
> PARAMETERS
FS11 parameter values:
  identifier: -
 name:
command terminal:
 lines: 24
 timeout:
             10
message:
             2
 type:
  interval: 15
 port: data
  frame:
             on
  simulation: off
  2nd port: none
  2nd type: 0
 ACK/NAK:
             off
data port:
speed: 9600
mode: rs-232
 data format:8n1
maintenance port:
 speed: 9600
system:
 modem: off
 vis sensor: on
 bl sensor: off
  +12V out:
             off
```

Значения параметров системы хранятся в энергонезависимой FLASH памяти.

Заводские настройки

Список параметров системы, установленных на заводе по умолчанию, приведен в **Табл. 12.** ниже. С помощью команды **SET DEFAULTS YES** (уровень администратора) можно восстановить заводские настройки системы.

Параметр	Значение по умолчанию
Тип сообщения	2
Интервал передачи сообщений	15
Порт сообщений	Данные
Подтверждение ACK/NAK	Выкл
Порт вторичного сообщения	Отсутствует
ID устройства	-
Имя	-
Скорость порта передачи данных	9600
Интерфейс порта передачи данных	RS-232
Четность порта передачи данных	8N1
Модемный модуль	Выкл
Скорость сервисного порта	9600
Интервал ожидания порта	10
Число строк на дисплее терминала	24
Ввод поправки на загрязнение окна датчика	Вкл
Ввод поправки на загрязнение окна датчика	Вкл
яркости фона	
Датчик яркости фона	Выкл
Датчик видимости	Вкл
Обогреватели колпака датчика видимости	Вкл
Обогреватели колпака датчика яркости фона	Вкл
Обогрев от конденсата датчика видимости	Вкл
Обогрев от конденсата датчика яркости фона	Вкл
Фрейм сообщения	Вкл
Выход +12 В	Выкл

Табл. 12. Заводские настройки системы

Дополнительные внешние датчики

Датчик яркости фона LM21

Чтобы добавить датчик яркости фона LM21 в систему FS11 и сообщения с данными, необходимо использовать команду **SET BL_SENSOR LM21.** После ввода данной команды контроллер интерфейсного блока начинает опрашивать датчик LM21 через свой внутренний интерфейс RS-485.

Датчик день/ночь

Чтобы измерять выход датчика день/ночь (фотопереключателя) и включить его показания в сообщения системы FS11, необходимо использовать команду конфигурации SET BL_SENSOR PHOTO_SWITCH.

Положительное напряжение интерпретируется как ночные условия, и значение яркости фона в сообщении датчика видимости FS11 устанавливается равным 0. Нулевое напряжение интерпретируется как дневные условия, и значение яркости фона устанавливается равным 1.

Имитация тестовых сообщений

Датчик видимости FS11 может быть настроен для работы в режиме имитации, который включает в себя передачу фиксированных или определяемых пользователем сообщений о видимости и статусе системы. Эта функция используется при тестировании системы. После перезагрузки система автоматически переключается в обычный режим измерения видимости. Режим имитации может также быть отключен с помощью команды **SIMULATE OFF** (уровень администрирования).

Пользователь может выбрать либо фиксированное тестовое сообщение, либо полностью настроить содержание сообщения. Фиксированное сообщение режима имитации может быть выбрано с помощью команды **SIMULATE TEST_MESSAGE** (уровень администрирования).

В системе предусмотрены предопределенные фиксированные тестовые сообщения для каждого типа сообщений. Если выбрано фиксированное тестовое сообщение, в зависимости от типа сообщения передается одно из сообщений, перечисленных в следующем разделе. Значения параметров, передаваемые в сообщениях, также перечислены в следующем разделе. Фреймы сообщений не фиксированы, но зависят от текущей конфигурации.

При изменении предопределенного фиксированного тестового сообщения отключите прежде всего режим имитации с помощью команды уровня администрирования SIMULATE OFF, затем измените тип сообщения (с помощью команды SET MESSAGE TYPE *number*). Снова включите режим имитации с помощью команды SIMULATE TEST_MESSAGE.

Для Сообщения 3 (сообщение о статусе системы) не предусмотрено сообщения имитации.

Фиксированные тестовые сообщения

Сообщение 1

IFS ∀EXT 1.62 AL 0 ALS 00319 AL 0#66D9∃-*

Сообщение 2

!FS ∀VIS 01850 AL 0 BL 01100 AL 0#FFAC∃-*

Сообщение 4

!FS ∀VIS 01850 VUC 01800 VIS3M 01900 VIS10M 02000 AL 0 BL 01100 BUC 01050 AL 0#68F7**∃**-*

Сообщение 5

!FS ∀VIS(01850(AL(0)))BL(01100(AL(0)))#663B**∃-***

Эмуляция сообщения FD12 Message 2

!FD 1∀00 1850 2000 //// // ///// #-*

Эмуляция сообщения FD12P Message 7

```
!FD 1∀00 1850 2000 R 61 61 61 0.33 12.16 0
23.3 01100-*
-RA-*
RERA-*
#-*
```

Эмуляция сообщения MITRAS Single Baseline

∀ID 1 V 1850 B 01100 S4101 -*****#

Эмуляция сообщения MITRAS Double Baseline

∀ID 1 V 1850 B 01100 S410101 **-***#

Ручное сообщение имитации

Пользователь может самостоятельно настроить внутреннее содержание сообщения, т. е. строку, начинающуюся символом ∀ (начало текста) и заканчивающуюся символом # (конец текста). Эта строка сообщения может быть задана после команды SIMULATE MANUAL_MESSAGE следующим образом:

SIMULATE MANUAL_MESSAGE string

В датчике FS11 не выполняется контроль достоверности текста сообщений, это означает, что сообщение передается в том виде, как оно написано.

В сообщение могут быть добавлены специальные символы с помощью следующих обозначений:

\mathbf{c}	=	Счетчик сообщений (увеличивающийся с каждым
		посланным сообщением)
n	=	Новая строка
\r	=	CR
\t	=	TAB
\mathbf{S}	=	Пробел
\[=	[
\]	=]
\xXX	=	Символ, соответствующий шестнадцатеричному
		числу ХХ

Пример ручного сообщения имитации приведен ниже:

Команда

SIMULATE MANUAL_MESSAGE this\sis\stestmessage

отсылает следующее сообщение

IFSA∀this is testmessage#EE5E∃-*.

В режиме автоматической передачи сообщений фреймы не отображаются, если использовалась команда **MESSAGE**.

Работа с LM21 через сервисный порт

Чтобы разрешить работу датчика LM21 через его сервисный порт, например, в ситуациях поиска и устранения неисправностей, калибровки и проверки работоспособности, выдается следующая информация.

При обычной работе параметрам датчика LM21 должны быть присвоены их значения по умолчанию, а его линия связи должна быть выделена (закрыта), чтобы ее мог использовать хост-процессор FSC202. Это позволяет рассматривать LM21 при работе как часть системы FS11.

Коммуникационные параметры последовательного интерфейса

В данном приложении FS11 настройки по умолчанию последовательного коммуникационного порта имеют следующий вид:

- 9600 бод
- Без проверки четности
- 8 бит данных
- 1 стоповый бит

Последовательная передача в формате RS-232

Для связи в стандарте RS-232 терминальный кабель техобслуживания Vaisala QMZ103 соединяет сигнальные кабели LM21 со стандартным разъемом PC/Laptop RS-232 interface sub-D9:

-	RS-232 TxD	к PC sub-D 3/9
-	RS-232 RxD	к PC sub-D 2/9
-	GND	к PC sub-D 5/9

Компания Vaisala рекомендует использовать кабель RS-232 длиной не более 50 м. Обычно стандартом RS-232 можно без проблем пользоваться на расстоянии до 100 м, но такие дальности не гарантируются.

Любой компьютер, на котором установлено терминальное эмуляционное программное обеспечение или VT100-совместимый терминал с последовательным интерфейсом RS-232, может быть использован в качестве сервисного терминала для датчика LM21.

Вход в командный режим и выход из него

Сервисная линия датчика должна быть назначена оператору с помощью команды **OPEN**.

Команда OPEN

Если не установлен идентификатор датчика (ID), введите

OPEN

Если ID установлен, например, А, введите

OPEN A

Если ID установлен, но забыт, введите

OPEN *

Если тип устройства LM включен в команду OPEN, нет необходимости вводить ID. Эта команда похожа на команду OPEN *, введите

OPEN LM

Если ID установлен, например, А, введите

OPEN LM A

Датчик LM21 отвечает

LM21 LINE OPENED FOR OPERATOR COMMANDS

Если в течение 10 минут не вводится никаких команд, LM21 закрывает линию автоматически. Интервал времени, после которого происходит закрытие линии, может быть настроен пользователем.

Если датчик LM21, будучи в командном режиме, получает команду **OPEN**, предназначенную другому устройству, он выполняет команду **CLOSE**.

Команда CLOSE

С помощью команды **CLOSE** линия может быть переключена в режим автоматической передачи данных.

Датчик LM21 отвечает

LM21 LINE CLOSED

Доступные команды

С помощью команды **HELP** можно получить информацию обо всех доступных командах. Введя **HELP** *Command*, можно получить информацию о конкретной команде.

Иерархия и описания команд описаны в Табл. 13. ниже и Табл. 14. на стр. 107.

Команда	Описание
CLOSE	Освобождает порт для передачи сообщений.
ECHO ON	Включает отображение вводимых символов
	(установлена по умолчанию).
ECHO OFF	Отменяет отображение вводимые символов.
MESSAGE message_number	Если количество сообщений не определено,
	LM21 отображает сообщение по умолчанию без
	фреймов передачи.
HELP command	Выдается список возможные команд. С помощью
	команды HELP с именем какой-либо команды,
	переданной в качества параметра, можно
	получить информацию об этой команде.
STATUS	Печать сообщения о состоянии.
PARAMETERS	Печать параметров конфигурации.
SET MESSAGE TYPE message_number	Выбирает тип передаваемого сообщения.
SET MESSAGE INTERVAL number	Устанавливает интервал передачи сообщений в
	секундах. Ноль отключает автоматическую
	передачу.
SET MESSAGE PORT DATA	Сообщение направляется в порт данных (по
	умолчанию).
SET MESSAGE PORT MAINTENANCE	Сообщение направляется в порт обслуживания.
SET UNIT_ID id	Устанавливается идентификатор блока: буквенно
	цифровой символ для идентификации
	сообщений и запросов. Символ «-» удаляет ID.
	По умолчанию ID не установлен, и в заголовках
	сообщений на месте идентификатора
	отображается пробел.
SET NAME name	Задает имя: буквенно-цифровая строка, которая
	может использоваться во время инсталляции,
	для определения, например, местоположения
	олока. максимальная длина строки – 12
	СИМВОЛОВ.
SET MAINTENANCE PORT BAUD number	Устанавливается скорость сервисного порта

Табл. 13. Команды LM21 уровня пользователя
Команда	Описание
	последовательной линии в диапазоне 3009600.
	Коммуникационные параметры: 8N1
	(фиксированы).
MEAS_SYNC	Перезапуск измерительного цикла. Момент
	отправки следующего сообщения с данными
	отсчитывается от момента удаления всех
	осредненных значений. Следующее сообщение
	передается через (интервал +2) секунд.
SET PORT_TIMEOUT number	Устанавливается интервал времени командного
	режима в минутах в диапазоне 030, 0 отменяет
	время ожидания, значение по умолчанию 10
	МИНУТ.
SET TERMINAL_LINES number	Настраивается количество строк, отображаемых
	на экране терминала. Минимум 5 строк (по
	умолчанию 24).
NAME	Выводит на дисплей имя устройства, заданное
	пользователем, тип устройства и ID.
VERSION	Просмотр списка версий программного
	обеспечения.
SET DATA_PORT BAUD number yes/no	Устанавливается скорость порта данных
	последовательной линии в диапазоне
	30019 200. Окно диалога подтверждения да/нет
	открывается только в том случае, если команда
	передается через порт данных (по умолчанию
	9600).
SET DATA_PORT PARITY 7E1 yes/no	Используются последовательные линии RS-232 и
	RS-485 со следующими параметрами передачи: 7
	бит данных, четность, 1 стоповый бит. Окно
	диалога подтверждения да/нет открывается
	только в том случае, если команда передается
	через порт данных (по умолчанию).
SET DATA_PORT PARITY 8N1 yes/no	Используются последовательные линии RS-232 и
	RS-485 со следующими параметрами передачи: 8
	бит данных, без проверки четности, 1 стоповый
	бит. Окно диалога подтверждения да/нет
	открывается только в том случае, если команда
	передается через порт данных.

В дополнение к набору команд уровня пользователя имеется второй, расширенный уровень команд для более глубокого администрирования и обслуживания системы. Команда доступа к этому расширенному уровню имеет вид LEVEL 1. Командная подсказка показывает текущий уровень каждой команды. У команд расширенного уровня подсказка имеет вид 1>.

Команда	Описание
SET MESSAGE FRAME ON	Фреймы сообщений включаются в передачу
	сообщений (по умолчанию).
SET MESSAGE FRAME OFF	Фреймы сообщений не включаются в передачу
	сообщений.
SET CONTAMINATION_COMPENSATION	Вводится поправка (компенсация) на загрязнение
ON	стекла (по умолчанию)

Табл. 14. Команды LM21 расширенного уровня

Команда	Описанио
OFF	Отменяется ввод компенсационнои поправки.
SET HOOD_HEATERS ON	Включается контроль и автоматическая работа
	нагревателя колпака (по умолчанию).
	Обогреватели колпака включаются, когда
	температура колпака опускается ниже
	установленного уровня.
SET HOOD_HEATERS OFF	Отключается контроль и автоматическая работа
	нагревателя колпака. Установите OFF при
	функционировании системы в условиях, когда
	нет необходимости использовать обогрев и когда
	датчик питается только источника постоянного
	тока.
SET DEW _HEATER ON	Включается контроль и автоматическая работа
	обогревателей, предотвращающих образование
	конденсата (по умолчанию). Эти нагреватели
	начинают подогревать оптические поверхности,
	когда температура окружающего воздуха
	опускается ниже установленного уровня.
SET DEW _HEATER OFF	Отключается контроль и автоматическая работа
	обогревателей, предотвращающих образование
	конденсата. Отключение производится при
	работе системы в условиях, когда нет
	необходимости использовать эти обогреватели
	(температура окружающего воздуха не
	опускается ниже 12 °C).
SET DEFAULTS yes/no	Восстанавливаются заводские настройки,
	открывается окно диалога подтверждения да/нет.

Настройка параметров

Команда **SET** используется для настройки или обновления системных коммуникационных параметров и параметров, относящихся к интерфейсу пользователя.

Команда **CALIBRATE** используется для настройки или обновления калибровки яркости фона и загрязнения окна. Команда **CALIBRATE** доступна только для пользователей, обладающих правами администратора системы. Для получения инструкций по калибровке обратитесь к руководству пользователя LM21.

С помощью команды **PARAMETERS** можно вывести для просмотра текущие параметры системы LM21. Результат выглядит следующим образом:

```
> PARAMETERS
LM21 parameter values:
identifier: -
name:
command terminal:
lines: 24
timeout:
           10
message:
           1
type:
interval: 15
           data
 port:
data port:
           9600
speed:
 data format:8n1
maintenance port:
           9600
 speed:
```

Значения параметров системы хранятся в энергонезависимой EEPROM-памяти.

Заводские значения параметров системы FS11

Табл. 15. перечислены значения по умолчанию параметров датчика LM21, используемого в составе системы FS11.

Табл. 15.	Значения по умолчанию параметров датчика
	LM21, используемого в составе системы FS11

Параметр	Значение по умолчанию
Тип сообщения	2
Интервал передачи сообщений	0 (выкл.)
Порт сообщений	Data
ID устройства	-
Имя	-
Скорость порта передачи данных	9600
Четность порта передачи данных	отсутствует
Скорость сервисного порта	9600
Интервал ожидания порта	10
Число строк на дисплее	24
терминала	
Поправка на загрязнение окна	Вкл
Нагреватели колпака	Вкл
Противоконденсатные	Вкл
нагреватели	
Фрейм сообщения	1 (тип FSI)

Стандартная инициализация LM21

Для приведения датчика LM21 в стандартное рабочее состояние интерфейсный блок передает команду запроса инициализации. При этом запускается установка коммуникационных параметров, необходимых для связи с интерфейсным блоком.

Интерфейсный блок → LM21 - запрос инициализации:

<SOH>LM <STX>&DOfsisetup<ETX>8395<EOT><CR><LF>

Результат:

В LM21 устанавливаются следующие значения параметров конфигурации:

- отсутствие автоматической передачи сообщений (MSG.INTERVAL 0)
- стандартное сообщение тип № 6, fsi-сообщение (MSG.TYPE 7)
- использование фреймов разрешено и установлен их fsi-тип (FRAME.TYPE 1)
- ID устройства отменен (DEVICE.ID *)

<SOH>LM <STX>ACK<ETX>D24B<EOT><CR><LF>

ГЛАВА 5 ПРИНЦИП ДЕЙСТВИЯ

Датчик видимости FS11 представляет собой устройство для измерения прямого рассеяния. Он состоит из измерительного блока (FSM102), интерфейсного блока (FSI102), хрупкой мачты (FS25010) и соединительных кабелей.

В состав измерительного блока FSM102 входят модуль приемника, модуль передатчика и плата контроллера. Он используется как автономный датчик с ограниченным числом внешних интерфейсов.

Электропитание, необходимое для работы измерительного блока FSM102 и обогрева оптики, обеспечивается через интерфейсный блок. В интерфейсном блоке имеются внешние силовые и коммуникационные интерфейсы. Интерфейсный блок состоит из основного источника питания (перем. тока), платы коммуникационного контроллера и дополнительной резервной батареи.

Передатчик FSM102 излучает продолжительные инфракрасные импульсы, которые фокусируются объективом в узкий пучок. Объектив приемника собирает рассеянный свет на PIN-фотодиоде для детектирования. Обнаруженный уровень засветки преобразуется, производится выборка измеренных значений и передача их в измерительный контроллер для дальнейших вычислений.

Коммуникационный контроллер собирает результаты измерений и передает их пользователю через последовательную линию, подключенную к драйверу RS-232 или RS-485 или к дополнительному модему.

Рис. 35. Блок-схема датчика FS11

Описание аппаратной части

Измерительный блок FSM102

Измерительный блок состоит из трех электронных модулей: передатчика, приемника и платы контроллера. Эти модули подробно описаны в последующих разделах.

Модуль передатчика FST102

Передатчик состоит из инфракрасного светодиода, контрольной и триггерной схем, стабилизатора интенсивности светодиода, приемника обратного рассеяния и схемы контроля загрязненности окна.

Электронная аппаратура передатчика заставляет инфракрасный светодиод излучать световые импульсы с частотой 2,2 кГц. Регулируемый резистивный (PIN) фотодиод контролирует интенсивность излучаемого света и автоматически поддерживает ее на заданном уровне. Благодаря этому компенсируется влияние температуры и старения на светодиод.

Рис. 36. Блок-схема передатчика FST102

Импульсный сигнал, поступающий от приемника FSR102, синхронизирует импульсы инфракрасного светодиода с синхронным усилителем приемника.

Дополнительный фотодиод измеряет свет обратного рассеяния от объектива, других объектов или загрязнений. Принцип измерения загрязненности окна основывается на изменении общего отражения светового пучка поверхностью окна. Этот принцип показан на **Рис. 37.** на стр. 115.

Рис. 37. Принцип измерения загрязненности окна передатчика и приемника FSM102

Следующие цифровые обозначения относятся к Рис. 37. выше:

- 1 = Фотодиод
- 2 = Инфракрасный светодиод
- 3 = Окно
- 4 = Объектив

Температура основного светодиода передатчика контролируется встроенной схемой контроля, в которую входят датчик температуры и нагревательный элемент. В холодную погоду схема обогрева повышает температуру светодиода до температуры, необходимой для поддержания стабильных параметров конуса излучения светодиода и длины волны излучаемого света.

Приемный модуль FSR102

Приемный модуль состоит из светочувствительного детектора, принимающего рассеянный свет, малошумящего предусилителя, фильтра верхних частот и полосового фильтра, двух АЦП, излучающего светодиода для измерения обратного рассеяния, схемы измерения загрязненности окна и некоторых устройств контроля и синхронизации.

Приемный PIN-фотодиод улавливает световые импульсы, рассеянные аэрозольными частицами. Сигналы фильтруются и обнаруживаются фазочувствительным усилителем, который синхронизирован с передатчиком.

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Рис. 38. Блок-схема приемника FSR102

Уровень внешней засветки до 30 ккд/м² не влияет на обнаружение полезного сигнала светодиодом и не насыщает предусилитель. Для обнаружения возможного насыщения, вызываемого внешней засветкой, проводится мониторинг уровня постоянного тока.

Для измерения обратного рассеяния и загрязненности предусмотрено два инфракрасных светодиода. Уровень света замеряется и преобразуется с помощью того же метода обнаружения, что и при измерении рассеянного сигнала. Принцип измерения загрязненности окна основывается на изменении общего отражения светового пучка поверхностью окна. Этот принцип показан на **Рис. 37.** на стр. 115.

Плата контроллера FSC102

Плата контроллера состоит из микропроцессора, коммуникационного интерфейса, схемы измерения температуры, схемы безопасности, памяти, схемы мониторинга и контроллеров нагревателей.

Плата контроллера выполнена на основе микропроцессора Hitachi H8/3048F. Помимо сбора данных и внутреннего контроля, плата FSC102 отвечает за связь с коммуникационным контроллером через последовательный порт RS-485.

Схема безопасности отслеживает уровень напряжения +5 В и функционирование системы, перезагружая аппаратуру в случае необходимости. На плате контроллера имеется также точный 20битный АЦП для измерения температуры с помощью датчика РТ100.

В блоке измерения видимости FSM102 имеется два независимых комплекта нагревателей: нагреватели колпаков во внешних колпаках оптических головок и противоконденсатные нагреватели в оптических модулях для предотвращения замутнения объективов.

Логика управления нагревателями колпаков построена на основе двух твердотельных реле. Пленочные элементы нагревателей обоих колпаков управляются независимо в соответствии с результатами измерения их температуры. Уровень напряжения питания нагревателей колпаков составляет 28 В перем. тока. Противоконденсатные нагреватели предназначены для предотвращения скопления конденсата на окнах датчика. Уровень напряжения питания противоконденсатного нагревателя составляет 13 В пост. тока.

Интерфейсный блок FSI102

Интерфейсный блок состоит из сетевого (перем. ток) источника питания (FSP101 + трансформатор + выключатель), платы коммуникационного контроллера (FSC202) и дополнительной резервной батареи (FSB101).

Электропитание, необходимое для работы измерительного блока и обогрева колпаков оптических головок, обеспечивается интерфейсным блоком. Имеются также интерфейсные разъемы для дополнительного датчика яркости фона LM21 и дополнительного датчика заградительного огня FS11OBS.

Входы для подключения внешнего питания и коммуникационных интерфейсов датчика FS11 расположены в интерфейсном блоке. Все внешние интерфейсы оборудованы схемами защиты от перенапряжения.

Плата коммуникационного контроллера FSC202

Плата коммуникационного контроллера FSC202 содержит все внешние коммуникационные интерфейсы. Плата FSC202 посылает запросы в измерительный блок FSM102 и датчик яркости фона LM21 по внутренней шине (RS-485) датчика, а также объединяет и формирует сообщения FS11 с данными из их ответных сообщений. Доступными опциями линии передачи данных являются последовательные линии RS-232 и (внешняя) RS-485, а также модемный интерфейс (опция). На плате FSC202 также предусмотрен отдельный интерфейс RS-232 для сервисной линии.

Выходной контакт +12 VOUT может использоваться для питания внешних опций, таких как заградительный огонь (FS11OBS) или фотопереключатель. Максимальный выходной ток 0,8 А.

Входы для измерения температуры (РТ100) и влажности в датчике видимости FS11 не используются. Если к этим входам подключен датчик Vaisala HMP45D, значения температуры и влажности измеряются и отображаются в сообщении о статусе, но нигде не используются.

Источник питания (сеть переменного тока)

Источник питания от сети переменного тока включает в себя автоматический выключатель и плавкие предохранители, плату источника питания FSP103 и трансформатор. На плате источника питания расположены вторичные плавкие предохранители, переключатель напряжения сети и схемы защиты от переходных процессов. Индикация функционирования источника питания переменного тока выполняется с помощью четырех светодиодов. Зеленый светодиод указывает на то, что с линией номинального напряжения 24 В пост. тока все в порядке. Три желтых светодиода говорят о том, что плавкие предохранители линии питания нагревателей 28 В перем. тока целы, и на каждом выходе есть напряжение.

Схема защиты от переходных процессов испытывалась путем подачи импульсов напряжения амплитудой 2 кВ, вырабатываемых в соответствии со стандартами тестирования EN 61000-4-5. Результаты испытаний показали, что такие броски напряжения не влияют на функционирование системы. При более высокой

амплитуде и повторяющемся характере скачков срабатывает автоматический выключатель. Таким образом, плата защищается от больших переходных токов и возобновляет нормальное функционирование после повторного включения автоматического выключателя.

Размещение плавких предохранителей показано на Рис. 53. на стр. 164.

Резервный аккумулятор

Приобретаемая дополнительно резервная батарея обеспечивает питание системы в течение не менее 30 минут (при 25 °C) в случае отказа основного питания. В мягких погодных условиях, когда не требуется обогрев колпаков, датчик FS11 питаться только постоянным током. В зарядном устройстве батареи QBR101 предусмотрен также интерфейс для подключения солнечных панелей или более емких внешних батарей. Для получения более подробной информации обратитесь к руководству пользователя QBR101.

Хрупкая мачта

Хрупкая мачта изготавливается из фибергласовой трубы. Такой же материал используется в системах посадочных огней на нескольких аэропортах по всему миру. Производитель мачт – фирма Exel проводила испытания на хрупкость мачт под наблюдением ИКАО (Международной организации гражданской авиации). Результаты этих испытаний можно получить по специальному запросу.

Кабель заземления, проложенный внутри мачты, подключен к мачте с помощью вилочного штекера. В случае удара мачты разъем выскользнет из закрепляющих винтов. При этом кабель измерительного блока также выскользнет из кабельной клеммы на FSI102 и отсоединится от FSC202.

Описание программного обеспечения

Программное обеспечение датчика FS11 настраивается по системным параметрам. Программный код содержит алгоритмы обработки сигналов и временной синхронизации системы. После перезапуска аппаратуры или подключения питания, программа инициализирует рабочие структуры данных и считывает системные параметры с FLASH-памяти в оперативную память. Правильность считываемых параметров проверяется по контрольным суммам.

Программа разделена на отдельные задачи, которые выполняются в реальном масштабе времени под контролем ядра операционной системы.

Программа работает с базой данных, в которой хранятся все измеренные значения. Специальная серверная задача предназначена для обновления сохраненных данных. Генерирование сообщений и запросов выполняется как отдельная задача. Также предусмотрена задача для распознавания команд.

Формирование сигналов тревоги основывается на информации, собираемой во время измерений. За логику обработки актуальных сигналов тревоги отвечает задача генерирования сообщений.

Порядок измерений

Датчик FS11 выполняет измерения видимости с 15-секундным интервалом. Четырнадцать секунд из этого периода затрачивается на измерение сигнала путем включения светодиода передатчика и опроса детектора приемника. После этого остается одна секунда на проведение диагностических измерений. В следующем 15-секундный интервал затрачивается не на диагностические измерения, а на измерение загрязненности окон.

Принцип измерения видимости

В блоке приемника FSM102 сигнал, генерируемый PIN-фотодиодом, усиливается и фильтруется с помощью прецизионных усилителей. Далее отфильтрованный сигнал детектируется фазочувствительным синхронным усилителем, и результат преобразуется в цифровое слово с помощью 16-битного АЦП. Процессор платы контроллера считывают эти цифровые слова для дальнейшей обработки.

Смещение приемника регулярно контролируется. Каждый отсчет данных состоит из значений сигнала и фона. Из одного значения

вычитается другое и получается скорректированное на смещение значение сигнала в реальном масштабе времени.

Расчеты

С помощью программного обеспечения датчика FS11 выполняется расчет коэффициента ослабления по выборке сигналов путем отделения сигналов, полученных от капель и других рассеивающих субстанций. Коэффициент ослабления рассчитывается отдельно для капель и прочих рассеивателей, затем полученные результаты суммируются с весовыми коэффициентами. Значение MOR вычисляется по суммарному коэффициенту ослабления с помощью следующей известной формулы 5-процентного контрастного отношения:

MOR = - ln0.05 / σ = 3 / σ

где сле о – коэффициент ослабления.

Внутренний мониторинг

В системе FS11 предусмотрена развитая встроенная система самотестирования. Измеряются различные напряжения и проверяются соответствующие уровни срабатывания для подачи аварийных сигналов и предупреждений.

В случае если какое либо из значений выходит за рамки, приемлемые для оптимальной работы системы, но результаты измерений все еще остаются достоверными, датчик FS11 выдает предупреждение. Например, причиной предупреждений может являться легкая загрязненность окна или старение светодиода передатчика. Если же обнаружена критическая неисправность оборудования, датчик выдает сигнал тревоги и соответствующие данные помечаются как отсутствующие (/////).

Встроенная система самотестирования включает в себя контроль загрязненности, контроль сигнала, контроль аппаратной части и тестирование памяти. Результаты тестирования отображаются в сообщении о статусе.

Сообщения о статусе датчика FS11

Сообщения о статусе датчика содержат результаты самодиагностики системы. Краткое сообщение о статусе содержит краткий отчет о статусе системы. Краткий отчет о статусе запрашивается с помощью команды **STATUS CHECK:**

0> status check FS11 SYSTEM STATUS: OK

Measurement unit: OK Current Events: NONE. Interface unit: OK Current Events: Conf2:VIS+ALS measurement Background luminance sensor: OK Current Events: NONE.

Сообщения о событиях

В настоящем разделе описаны сообщения о событиях различных блоков.

Сообщение о событии	Причина
MOR1:MOR underrange	Измеренное значение MOR превышает
	верхний допустимый предел
MOR2:MOR overrange	Измеренное значение MOR меньше
	нижнего допустимого предела
Cal1:calibration procedure	Процедура калибровки измерительного
ongoing	блока не завершена.
Cal2:opaque glass test failed	Не удалось выполнить калибровку
	измерительного блока.
	Повторить процедуру калибровки
	измерительного блока.
Cal8:calibration not valid	Калибровка измерительного блока
	недействительна.
	Повторить процедуру калибровки
	измерительного блока.
WinCon1:contamination warning	Окна измерительного блока загрязнены.
	Очистить окна в ближайшем будущем.
WinCon2:contamination alarm	Окна измерительного блока загрязнены.
	Очистить окна немедленно.
WinCon4:clogging alarm	Окна измерительного блока засорены.
	Очистить окна немедленно.
CPU1:memory failure	Неисправность памяти контроллера
	измерительного блока.
	Если эта неисправность не исчезает
	после выключения и повторного
	включения измерительного блока, блок
	необходимо заменить.

Табл. 16. Сообщения о событиях измерительного блока

Сообщение о событии	Принина
CPU2:visibility sample sequence	
failed	пеисправность приемника или
CPLIA:ESC massurement CPLI	
internal power supply failure	
internal power supply failure	блока
CPI 18 temperature sensor failure	Неисправность датчика температуры
or oblightperature sensor failure	контроплера измерительного блока
Tperi1:dew heater failure	Неисправность противоконленсатного
	нагревателя перелатчика
	измерительного блока.
Tperi2:hood heater failure	Неисправность нагревателя коллака
	передатчика измерительного блока.
Tperi4:LED aged	Выработал свой ресурс источник света
· · · · · · · · · · · · · · · · · · ·	передатчика измерительного блока.
Tperi8:LED failure	Неисправность источника света
· · · · · · · · · · · · · · · · · · ·	передатчика измерительного блока.
TwinCon1:backscatter high	Уровень сигнала обратного рассеяния
5	увеличился из-за препятствия на
	оптической траектории (передатчик
	измерительного блока)
TwinCon2:backscatter	Сбой измерения обратного рассеяния
measurement failure	(передатчик измерительного блока)
TwinCon4:total reflection	Сбой измерения полного отражения
measurement failure	(передатчик измерительного блока)
Rperi1:dew heater failure	Неисправность противоконденсатного
	нагревателя приемника измерительного
	блока
Rperi2:hood heater failure	Неисправность нагревателя колпака
	приемника измерительного блока
Rperi4:main receiver saturated	Насыщение приемника
failure	измерительного блока из-за
	отражений от препятствия или
	неправильной ориентации
	измерительного блока
Rperi8:main receiver signal offset	Измерительный блок: неисправность
drift failure	приемника, контроллера или
	внутреннего кабеля
RwinCon1:backscatter high	Уровень сигнала обратного рассеяния
	увеличился из-за препятствия на
	оптическои траектории (приемник
	измерительного блока).
Durin Orin Other alternation	Очистить окна немедленно.
RWINCONZ:DackScatter	Не удается измерить обратное
measurement failure	рассеяние (приемник измерительного
Durin Condutated rafie ation	
RwinCon4:total reflection	Соой измерения полного отражения
Tyor1: Transmitter failure	(приемник измерительного олока)
Tyor2: Transmitter failure	суммарный соой передатчика
	измерительного олока
I Xer4: I ransmiller failure	
	суммарный соой приемника
	измерительного олока
Kxer4: Keceiver fallure	
Kxero: Kecelver failure	
Rxer16: Receiver failure	

Сообщение о событии	Причина
Conf0:VIS measurement only	Интерфейсный блок настроен на
	взаимодействие с датчиком
	измерительного блока, но не с датчиком
	яркости фона.
Conf1:ALS measurement only	Интерфейсный блок настроен на
	взаимодействие с датчиком яркости
	фона, но не с измерительным блоком.
Conf2:VIS+ALS measurement	Интерфейсный блок настроен на
	взаимодействие с измерительным
	блоком и датчиком яркости фона.
Conf8:configuration failure	Интерфейсный блок не настроен на
	взаимодействие ни с измерительным
	блоком, ни с датчиком яркости фона.
InCo1:VIS sensor not responding	Измерительный блок не отвечает.
InCo2:ALS sensor not	Датчик яркости фона не отвечает.
responding	
Batt1:Battery Mode	Сетевое питание недоступно, прибор
	работает от батареи.
Batt2:Battery Low	Сетевое питание недоступно, прибор
	работает от батареи.
	Низкое напряжение батареи, система
	скоро отключится.
CPU1:+12V output disconnected	Обнаружено короткое замыкание в цепи
	+12 В. Питание отключено.
	Проверьте подключенные устройства на
	наличие КЗ. Чтобы вновь включить
	питание +12 В, необходимо
	перезапустить интерфейсный блок.
CPU2:memory failure	Контроллер интерфейсного блока
	обнаружил неисправность памяти.
	Если эта неисправность не исчезает
	после выключения и повторного
	включения интерфейсного блока,
	необходимо заменить плату
	контроллера этого блока.
CPU4:FSC interface CPU	Неисправность внутреннего источника
internal power supply failure"	питания контроллера интерфеисного
	олока.
	Если эта неисправность не исчезает
	после выключения и повторного
	включения интерфеисного олока,
	неооходимо заменить плату
	контроллера этого олока.

Табл. 17. Сообщения о событиях интерфейсного блока

Сообщение о событии	Причина
BL1:Background Luminance	Измеренная яркость больше верхней
Underrange	границы диапазона измерений.
BL2:Background Luminance	Измеренная яркость меньше нижней
Overrange	границы диапазона измерений.
Cal1:Calibration Procedure	Процедура калибровки датчика яркости
Ongoing	фона еще не завершена.
Cal8:Calibration Not Valid	Сбой процедуры калибровки датчика
	яркости фона.
WinCon1:Window Contamination	Окна датчика яркости фона загрязнены.
Warning	
WinCon2:Window Contamination	Окна датчика яркости фона загрязнены.
Alarm	
WinCon4:Window Clogging	Окна датчика яркости фона замусорены.
Alarm	
Misc1:Dew Heater Failure	Неисправность противоконденсатного
	нагревателя датчика яркости фона
Misc2:Hood Heater Failure	Неисправность нагревателя колпака
	датчика яркости фона
Misc4:CPU Memory Failure	Неисправность памяти контроллера
	датчика яркости фона.
	Если эта неисправность не исчезает
	после выключения и повторного
	включения датчика яркости фона, этот
	датчик необходимо заменить.
Misc8:Sensor Sensitivity Failure	Неисправность приемника датчика
	яркости фона
WinMeas1:Backscatter High	Сигнал обратного рассеяния датчика
	яркости фона очень велик.
WinMeas2:Backscatter	Не удается измерить обратное
Measurement Failure	рассеяние с помощью датчика яркости
	фона
vvinivieas4: I otal Reflection	не удается измерить полное отражение
Measurement Failure	с помощью датчика яркости фона

Табл. 18. Сообщения о событиях датчика яркости фона

Длинное сообщение о статусе системы, содержащее численные значения внутренних измерений, может быть запрошено с помощью команды **STATUS**:

```
>STATUS
FS11 SYSTEM STATUS: OK
Measurement unit: OK
Receiver:
Window cont: 0 backscatter: 35
DC saturation: 0 offset: -0.09
Transmitter:
                0 backscatter: 8
Window cont:
               162
Intensity:
Contamination compensation: ON
Temperatures (unit C):
 surface: 22.8 CPU: 27.8 RX: 27.3 TX: 29.3 hood RX: 20.3
 Hood TX: 21.0
Voltages:
 +12V: 11.4 -12V:-11.3 VB: 12.5 VR: 6.7
Heater status:
 Hood TX: OFF, hood RX: OFF, dew: OFF
Interface unit: OK
Temperatures (unit C):
CPU: 27.1, external: /////
Humidity: ////
Voltages:
       12.1 +12Vout: 0.0 PVin: 23.8 V5I: OFF
 +12V:
Background luminance sensor: OK
 Window cont: 10
 Contamination compensation: ON
 Backscatter: 0
 CPU: 26.2 hood: 24.6
 Heater status: hood: OFF, dew: OFF
 V5iso: ON
#
где
FS11 System status =
                      Статус уровня системы
                      Статус FSM102
Measurement unit
                  =
Приемник:
  Window cont
                  =
                      Уменьшение пропускной способности
                      окна, в %
  Backscatter
                      Уровень сигнала полной блокировки, в %
                  =
  DC saturation
                      Уровень напряжения постоянного тока
                  =
                      сигнала полного насыщения приемника, в
                      %
  Offset
                      Смещение рассеянного сигнала (АЦП
                  =
                      необработанного сигнала, единицы –
                      младший значащий бит)
Передатчик:
```

Window cont	=	Уменьшение пропускной способности окна, в %
Backscatter	=	Уровень сигнала полной блокировки, в %
Intensity	=	Ток светодиода в мА
Contamination	=	Статус компенсации значения видимости
compensation		на загрязненность окна
Температура:		I I I I I I I I I I I I I I I I I I I
Surface	=	Температура окружающего возлуха
5411400		FSM102
CPU	=	Температура FSC101
RX	=	Температура FSR102
TX	=	Температура FST102
Hood PY	_	Температура колцака приемицка
Hood TV	_	Температура колпака приемника
	_	температура колпака передатчика
напряжение:	_	Da
± 12 V	=	Регулируемое положительное расочее
		напряжение для приемника, передатчика и FSC101
-12 V	=	Регулируемое отрицательное рабочее
		напряжение для приемника и передатчика
VB	=	Напряжение, регулирующее +12 В
VR	=	Напряжение, регулирующее +5 В
Статус нагревателя:		
Hood TX	=	Автоматическая система контроля
		нагревателя колпака передатчика
		вкл/выкл, *= ток нагревателя
Hood RX	=	Автоматическая система контроля
		нагревателя колпака приемника вкл/выкл,
		*= ток нагревателя
Dew	=	Автоматическая система контроля
		противоконденсатного нагревателя
		вкл/выкл. *= ток нагревателя
Interface unit	=	CTATVC FSI102
Температура.		
CPU	=	Температура FSC202
External	=	Ланные о температуре окружающего
External		возлуха FSI102 по датнику HMP45D
Humidity	_	
Tuillally	_	данные о влажности окружающего
Howagerowe		(кидпо)
тапряжение:	_	Daminum 100 4050100
± 12 V	_	гегулируемое расочее напряжение для
10.17		F5C202
+12 Vout	=	Регулируемое раоочее напряжение для
		заградительного огня и НМР45

PVin	=	Напряжение питания либо от FSP103 (~24 В пост. тока) либо от резервной батареи (~12 В пост. тока)
V5I	=	Изолированное рабочее напряжение +5 В пост. тока для
Daakaround	_	КS-485 (ВКЛ/ВЫКЛ) Стотуса I M21
luminance sensor	_	
Window cont	=	Уменьшение пропускной способности окна, в %
Contamination	=	Статус компенсации значения яркости
compensation		фона на загрязненность окна
Backscatter	=	Уровень сигнала полной блокировки, в %
CPU	=	Температура LMB201
Hood	=	Температура колпака
Статус нагревателя:		
Hood	=	Автоматическая система контроля нагревателя колпака вкл/выкл, *= ток нагревателя
Dew	=	Автоматическая система контроля
Dew		противоконленсатного нагревателя
		RKT/RLIKT *= TOK Harpenatera
V5iso	=	Изолированное рабочее напряжение +5 В
		пост. тока для RS-485 (вкл/выкл)
#	=	Конец текста

Статус нагревателя показывает, включена ли схема автоматического контроля нагревателя. Если схема автоматического контроля нагревателя включена, она будет автоматически включать и выключать нагреватель, поддерживая температуру в допустимом диапазоне.

Звездочка (*) перед статусом нагревателя (ON/OFF) указывает на то, что в настоящий момент нагреватель включен.

Сигналы тревоги

В данном разделе описаны различные типы сигналов тревоги датчика FS11.

Табл. 19. Сообщения об ошибках

ОШИБКИ	Причины
SENSOR NOT RESPONDING	Измерительный блок FSM102 или LM21
	не отвечает
MEMORY ERROR	Ошибка в контрольной сумме FLASH
	памяти, конфигурация недействительна

Табл. 20. Сигналы тревоги

СИГНАЛЫ ТРЕВОГИ	Причины
TRANSMITTER FAILURE	Передатчик не отвечает
LED FAILURE	Интенсивность светодиода передатчика
	слишком низкая
RECEIVER FAILURE	Данные от приемника не поступают или
	недействительны
POWER SUPPLY	Одно из напряжений питания выходит
	за пределы допустимых значений
BACKSCATTER HIGH	Уровень сигнала обратного рассеяния
	увеличился, препятствие на оптической
	траектории
RECEIVER SATURATED	Уровень внешней засветки на
	приемнике слишком высок, это может
	быть вызвано, например, отраженными
	солнечными лучами
SCATTER SIGNAL	Помеха в измеряемом объеме,
SATURATED	вызывающая мощное рассеяние.
SIGNAL OFFSET DRIFTED	Смещение превысило ±5 LSB от нуля,
	это может быть вызвано наличием
	другого датчика видимости в
	непосредственной близости или
	другими помехами.
TEMPERATURE SENSOR	Датчик температуры поверхности не
FAILURE	подключен или вышел из строя.

ПРЕДУПРЕЖДЕНИЯ	Причины
WINDOW CONTAMINATED	Загрязнение окна датчика возросло, что
	привело к уменьшению пропускаемости
	загрязнения еще возможна.
BATTERY LOW	Низкое напряжение резервной батареи
	(<11 В пост. тока), остающееся время
	работы ограничено
LED AGED	Светодиод состарился, необходимая
	мощность возбуждения возросла,
	оставшееся время работы ограничено

Табл. 21. Предупреждающие сообщения

Табл. 22.	Указательные	сообщения
-----------	--------------	-----------

УКАЗАНИЯ	Причины
WORKING ON BATTERY	Питание (перем. тока) выкл,
	нагреватели колпаков не
	функционируют
+12V OUTPUT	Выход +12 В в интерфейсном блоке
DISCONNECTED	отключен из-за короткого замыкания на
	выходной линии. Это не влияет на
	измерения, но предупреждающие
	сигналы или другие опции,
	подключенные к этому выходу, не
	функционируют.
HOOD HEATER FAULT	Обогрев колпаков не функционирует.
	Температура колпака увеличилась
	менее чем на 2 °С в течение 5 минут с
	момента включения обогрева схемой
	автоматического контроля обогрева.
	ВАЖНО! Если системы питается только
	от резервной батареи или постоянным
	током, во избежание появления этого
	указания установите обогрев колпака в
	положение ВЫКЛ.
DEW HEATER FAULT	Противоконденсатный нагреватель не
	функционирует, во включенном
	состоянии ток через нагреватель не
	протекает

Контроль загрязненности и блокировки оптики

Загрязнение и блокировка оптики передатчика и приемника постоянно контролируются. Датчик FS11 отслеживает вышеуказанные параметры путем измерения загрязненности окон и сигналов обратного рассеяния. Команда CLEAN используется для установки эталонных значений загрязненности окна и сигналов блокировки. Если значения обратного рассеяния выходят за рамки допустимых, данные о видимости помечаются как отсутствующие (/////) и выдается сигнал тревоги.

Обратное рассеяние передатчика измеряется аналоговой схемой с использованием светодиода передатчика в качестве источника света. Чем больше сигналы обратного рассеяния, тем больше значение обратного рассеяния передатчика.

Обратное рассеяние приемника измеряется основной схемой приемника с использованием дополнительного светодиода в качестве передатчика. Чем больше света рассеивается в обратном направлении, тем больше сигнал.

Сигнал тревоги BACKSCATTER HIGH генерируется в том случае, если сигнал обратного рассеяния приемника или передатчика существенно превышает эталонный уровень.

В схеме измерения загрязненности окна используется отдельный светодиод и детектор, расположенный по другую сторону окна. Принцип измерения иллюстрируется **Рис. 37.** на стр. 115. Изменение сигнала при наличии загрязнения по сравнению с сигналом при чистой оптике пропорционально загрязнению окна. Значение загрязнения окна в сообщении о статусе показывает степень снижения прозрачности окна. Например, значение загрязнения 10% означает, что прозрачность окна снизилась на 10% и составляет теперь только 90% первоначального значения.

Общая пропускаемость оптического пути вычисляется с учетом прозрачности окон приемника и передатчика. Предупреждение о загрязненности окна WINDOW CONTAMINATED передается при уменьшении общей прозрачности до 90%, что тем не менее не препятствует надежному измерению рассеянного света.

Компенсация загрязненности окон

Общее значение прозрачности используется также для расчета значений видимости с поправкой на компенсацию загрязненности окна. Поправка на загрязнение вводится только при умеренном загрязнении окна, позволяющем проводить надежные измерения видимости. Если расчетное значение общей прозрачности уменьшилось, но надежные измерения рассеяния света еще возможны, выдается предупреждение о загрязнении окна с указанием на необходимость очистки. Необходимо отметить, что значения видимости все еще остаются надежными и передаются обычным образом.

Если ввод поправки на загрязнение окон отменен с помощью команды **SET CONTAMINATION_COMPENSATION VISIBILITY_SENSOR OFF,** компенсация не производится. Однако в этом случае предупреждения о возросшей загрязненности окон все равно будут передаваться, если общая прозрачность окон уменьшилась.

Мониторинг сигнала

Мониторинг насыщения приемного блока производится путем измерения постоянной составляющей сигнала фотодиодного усилителя. В случае попадания прямого или отраженного солнечного света в объектив приемника постоянная составляющая измеренного электрического сигнала может возрасти до значения, влияющего на измерение видимости. Если постоянная составляющая составляющая сигнала настолько высока, что она препятствует надежному измерению, данные о видимости помечаются как отсутствующие (/////) и выдается сигнал тревоги RECEIVER SIGNAL SATURATED.

Насыщение рассеянного сигнала контролируется в процессе измерения видимости. Если достигнуто максимальное значение этого сигнала, измерение выходит на уровень насыщения, и дальнейшее надежное измерение становится невозможным. В этом случае данные о видимости помечаются как отсутствующие (/////) и выдается сигнал тревоги SCATTER SIGNAL SATURATED. Наиболее вероятной причиной насыщения рассеянного сигнала является попадание постороннего объекта в измерительный объем, что вызывает мощное отражение в направлении приемника.

Погрешность смещения приемного блока в системе FS11 регулярно контролируется. Контроллер отключает передатчик и проводит обычную процедуру измерения рассеяния без световых импульсов передатчика. Если уровень сигнала смещения слишком высок, выдается тревожное сообщение SIGNAL OFFSET DRIFTED, данные о видимости помечаются как отсутствующие (/////).

Наиболее вероятной причиной увеличения смещения сигнала является оптическая помеха от другого датчика видимости, находящегося поблизости, или другие помехи на частоте приблизительно 2,2 кГц.

Стабильность интенсивности света передатчика

Стабильность интенсивности передатчика поддерживается с помощью контура обратной связи, в котором для контроля световой интенсивности выходного сигнала используется PIN-фотодиод. Отслеживая ток возбуждения светодиода, схема обнаруживает возрастание этого тока. Естественными причинами такого изменения могут быть только загрязнение светового пути и старение светодиода. Если требуется более высокая мощность, ток возбуждения увеличивается. Когда ток возбуждения увеличивается до уровня, при котором светодиод стареет быстрее, чем раньше, но надежные измерения все еще возможны (225 мА), выдается предупреждение LED AGED. Тревожное сообщение LED FAILURE выдается, когда ток возбуждения превышает уровень 325 мА, при котором надежные измерения невозможны (значения видимости замещаются символами ////).

Функционирование нагревателей

В блоке измерения видимости FSM102 имеется два независимых комплекта нагревателей: нагреватели колпаков во внешних колпаках оптических головок и противоконденсатные нагреватели в оптических модулях для предотвращения замутнения объективов.

Мониторинг нагревателя выполняется с помощью датчиков температуры, расположенных на колпаке с той стороны, где наклеена нагревательная пленка. Выход датчика температуры используется для стабилизации температуры колпака с помощью автоматической системы управления нагревателем. Эта система включает нагреватели, когда температура колпака опускается ниже 15 °С и выключает их, когда температура поднимается выше 20 °С.

Если значения датчика температуры недействительны, обогрев отключается и выдается сообщение HOOD HEATER FAULT. Если в течение 5 мин после того, как система автоматического управления нагревателем включила нагреватель, температура увеличилась менее чем на 2 °C, также выдается сообщение.

Противоконденсатные нагреватели предотвращают образование конденсата на оптических поверхностях. Они поддерживают температуру внутри передатчика и приемника несколько выше температуры окружающей среды. Если противоконденсатный нагреватель был активирован (с помощью команды SET DEW_HEATER VISIBILITY_SENSOR ON или SET DEW_HEATER BL_SENSOR ON), система автоматического управления нагревателем включит нагреватель, когда температура окружающего воздуха опустится ниже 10 °C. Нагреватель автоматически отключится, когда температура окружающего воздуха поднимется выше 12 °C.

Если нагреватель находится во включенном состоянии, но ток через него не течет, выдается сообщение DEW HEATER FAULT.

Источники питания

Напряжения всех внутренних источников питания подвергаются постоянному мониторингу и если значение измеренного напряжения отличается от номинального на ±1 В, передается сигнал тревоги POWER SUPPLY. Напряжение питания +5 В контролируется с помощью отдельной схемы безопасности и не входит в программу мониторинга. Если значение напряжения +5 В падает ниже 4,5 В, схема безопасности выполняет перезапуск и поддерживает плату контроллера в состоянии перезапуска до тех пор, пока это напряжение не повысится до значения, превышающего 4,6 В.

Наличие напряжения питания в сети переменного тока контролируется на входе FSC202. Если входное напряжение PVin превышает 15 В, питание перем. тока подключено. Если же входное напряжение ниже 15 В, датчик FS11 переходит на питание от резервной батареи и выдается индикация WORKING ON BATTERY. Если напряжение питания на входе ниже 11 В пост. тока, выдается предупреждение BATTERY LOW.

Выходное напряжение +12 VOUT на выходе также контролируется. Выход защищен с помощью самовосстанавливающегося предохранителя номиналом 0,9 А. Если этот предохранитель отключает линию, например, в случае кратковременного короткого замыкания, программное обеспечение отключает выход целиком и ждет в течение приблизительно 1 минуты пока предохранитель не охладится и не восстановится, и затем подключает напряжение +12 VOUT к линии. Если короткое замыкание не ликвидировано, и предохранитель вновь отключает линию, программное обеспечение не пытается подключить напряжение к линии во второй раз, а выдает индикацию +12 OUTPUT DISCONNECTED. В такой ситуации напряжение на контакте +12 VOUT может быть возвращено только после перезагрузки платы FSC202 или с помощью команды **SET +12VOUT ON** (уровень администратора).

Изолированное рабочее напряжение +5 В пост. тока для RS-485 (V5I) подается только при выборе интерфейса RS-485 для передачи данных (с помощью команды **SET DATA_PORT MODE RS- 485).**

Аналоговые интерфейсы

Достоверность измеренных значений определяется следующим образом: температура и влажность контролируются для подтверждения того, что датчик подключен, и измеренные значения попадают в допустимые диапазоны измерения. Допустимый диапазон значений при измерении температуры: 0...2,5 В.

ГЛАВА 5

Исключение составляют значения температуры поверхности (см. **Рис. 39. ниже**) и внешней температуры (разъем на FSC202) которые измеряются с помощью PT100. Их допустимый диапазон составляет от –60 °C до +80 °C. Допустимый диапазон значений при измерении датчиком влажности составляет от 0 до 1 В.

К Рис. 39. относятся следующие цифровые обозначения:

1 = Датчик температуры поверхности

Сигнал тревоги генерируется только в случае невозможности выполнить измерение температуры поверхности. Это тревожное сообщение TEMPERATURE SENSOR FAILURE, которое генерируется, когда результат измерения выходит за пределы допустимого диапазона. Другие температурные измерения выполняются только в целях контроля и не влияют на функционирование устройства.

Контроль памяти и работа программ

После перезапуска датчик FS11 очищает и инициализирует все данные SRAM-памяти.

После перезапуска системы рассчитывается и проверяется контрольная сумма параметров FLASH-памяти. Если в контрольной сумме обнаружены ошибки, выдается сообщение об ошибке в памяти.

Функционирование программы контролируется с помощью специальной схемы безопасности. Если эта схема не запускается каждую секунду, выполняется перезапуск оборудования.

На нормальное функционирование плат FSC102 и FSC202 указывают зеленые светодиоды, мигающие раз в секунду. Светодиод статуса платы FSC202 расположен на крышке FSC202 внутри интерфейсного блока FSI102. Светодиод статуса платы FSC102 расположен под центральной круглой крышкой платы FSM102. Чтобы получить доступ к этому светодиоду, необходимо снять крышку. Если зеленый светодиод статуса вспыхивает один раз, это указывает на нормальное функционирование платы. Если зеленый светодиод статуса вспыхивает дважды, это является предупреждением. Если зеленый светодиод статуса вспыхивает три раза, это тревожный статус и, наконец, четыре вспышки свидетельствуют об ошибке в работе платы.

Мониторинг коммуникаций

Контроль состояния внутренних коммуникационных линий между коммуникационным контроллером FSC202, измерительным блоком FSM102 и датчиком яркости фона LM21 осуществляется путем вычисления контрольной суммы CRC16, которая используется во всех внутренних коммуникациях. В целях технического обслуживания остальные коммуникационные ошибки записываются в журнал ошибок и могут быть прочитаны с помощью команды ELOG (уровень администратора).

Все данные имеют свои индивидуальные периоды достоверности. Как правило, период достоверности составляет 1,5 измерительного интервала параметра и зависит от параметра. Если в течение периода достоверности данные, являющиеся критическими для измерения видимости, не обновляются, значения видимости помечаются как отсутствующие (/////). Причина, по которой данные отсутствуют, отображается в сообщении о статусе.

Датчик яркости фона

Мониторинг аппаратных параметров и измерений датчика яркости фона LM21 выполняется самим датчиком. Для получения информации о параметрах мониторинга обратитесь к руководству пользователя LM21(раздел Вспомогательные руководства на стр. 9)

Журнал ошибок

Все индикации, предупреждения, сигналы и ошибки, выявленные в результате внутреннего мониторинга, записываются в журнал ошибок для использования в процессе технического обслуживания. Просмотреть содержимое журнала ошибок можно с помощью команды **ELOG** (уровень администратора).

Пример записи об ошибке:

```
1> elog
Visibility sensor:
Window contamination warning: total 2, first #1, last #3
Backscatter high: total 1, first #2, last #2
Interface unit:
No errors logged
```

Первое и последнее появление ошибок рассчитывается на основе последней команды **ELOG CLEAR.** Команда **ELOG CLEAR** обнуляет счетчики.

Текущая страница специально оставлена пустой.

ГЛАВА 6 ОБСЛУЖИВАНИЕ

Очистка окон FSM102

Очистка окон и колпаков датчика является единственной процедурой, составляющей периодическое обслуживании датчика. Датчик FS11 может компенсировать умеренную величину загрязненности окна, но когда загрязненность превышает определенные пределы, требуется очистка.

Окна датчика и колпаки должны очищаться как минимум один раз в шесть месяцев или чаще, в зависимости от окружающих условий (например если датчик располагается в близи проезжей части). Если датчик используется в аэропорту, очистка окон должна проводиться каждые три месяца. Немедленная очистка требуется, если в сообщении о статусе имеется предупреждение WINDOW CONTAMINATED.

Ниже приведена процедура очистки.

- Протрите окна с помощью мягкой безволокнистой ткани, смоченной в изопропиловом спирте. Будьте аккуратны и не поцарапайте поверхность окна. Если обогрев окна функционирует правильно, поверхность окна высыхает быстро.
- 2. Убедитесь, что на колпаках и оптических частях датчика отсутствует конденсат, а также наросты снега или льда.
- 3. Удалите пыль с внешних и внутренних поверхностей колпаков.

ВАЖНО При удалении льда и снега с колпаков, особенно с обогреваемых поверхностей, не используйте острые предметы. Это может повредить нагревательную пленку. Не пытайтесь просунуть какойлибо инструмент под пленку, так как из-за этого пленка может отклеиться от поверхности колпака. Важно, чтобы нагревательная пленка плотно прилегала к поверхности колпака, в противном случае передача тепла от пленки к поверхности колпака ухудшится, что может привести к обгоранию пленки.

4.	После того, как оптические поверхности очищены от
	загрязнений, убедитесь, что значения WINDOW CONT
	приемника и передатчика в сообщении о статусе близки к
	нулю. Это можно проверить и после через коммуникационную
	(модемную) линию.

ВАЖНО Перед проверкой значений WINDOW CONT убедитесь, что окна сухие.

5. Если значения WINDOW CONT заметно отличаются от нуля, введите команду CALIBRATE WINDOW_CLEAN VISIBILITY_SENSOR. Эта команда не имеет параметров и используется для создания эталонного чистого состояния, по отношению к которому измеряется загрязненность. По этой команде устанавливается также эталонное значения обратного рассеяния.

ВАЖНО	Перед вводом команды CALIBRATE WINDOW_CLEAN
	VISIBILITY_SENSOR убедитесь, что окна датчика сухие.

ВАЖНО Во время выполнения команды CALIBRATE WINDOW_CLEAN VISIBILITY_SENSOR в измерительном объеме не должно находиться никаких посторонних предметов. Особенно важно в первую очередь удалить матовые стекла, используемые для калибровки видимости.

При очистке окон и колпаков рекомендуется очистить также окно датчика яркости фона в соответствии с руководством пользователя LM21 (см. раздел Вспомогательные руководства на стр. 9).
Калибровка FS11

Датчик FS11 откалиброван на заводе-изготовителе. Как правило, при нормальной работе датчика его перекалибровка не требуется. Однако, если выполнялась замена плат, или в системе выдавались предупреждения или сигналы тревоги, датчик нуждается в перекалибровке. Печатные платы не нуждаются в калибровке.

Проверка калибровки должна проводиться каждый год с помощью калибровочных комплектов FSA11 и PWA11. Если при проверке выявляются изменения в показаниях, отличающиеся менее чем на <u>+</u>3%, перекалибровка датчика не рекомендуется, поскольку изменения не выходят за пределы допустимой погрешности измерения.

Перекалибровка требуется в том случае, если производилась замена модулей приемника передатчика. В этом случае необходимо выполнить перекалибровку измерений прямого рассеяния загрязненности окна.

Калибровка видимости FSM102

При калибровке измерения видимости дальность видимости должна в идеале быть более 500 м, и не должно быть никаких осадков. Расчет и корректировка калибровки производится с помощью калибровочного комплекта FSA11. Этот комплект состоит из заглушек, предназначенных для блокирования оптики приемника и передатчика, шаблонных пластин и двух матовых стекол, с калиброванными характеристиками рассеяния.

Процедура калибровки состоит в проверки двух точек: сигнала нулевого рассеяния и сигнала очень большого рассеяния. Нулевой сигнал получается с помощью заглушек, а большой сигнал – с помощью рассеивающих пластин из матового стекла.

Видимость, соответствующая сигналу, полученному с помощью матовых стекол примерно равна 3 - 4 метрам. Если калибровка выполняется в дождливую погоду, ошибка будет пропорциональна площади рассеивающей пластины, покрытой каплями. Убедитесь, что эта площадь пренебрежимо мала по сравнению общей площадью.

ВАЖНО	Перед проверкой и калибровкой очистите окна датчика и проверьте состояние калибровочных пластин, очистив их в случае необходимости.

ВАЖНО	Избегайте возникновения царапин на стеклянных пластинах,
	поскольку они отрицательно влияют на результаты калибровки.

Процедура проверки калибровки FSM102

Для выполнения процедуры проверки калибровки выполните следующие указания.

- 1. Очистите окна в соответствии с инструкциями из раздела Очистка окон FSM102 на стр. 141 и проверьте состояние калибровочных стеклянных пластин, очистив их в случае необходимости.
- 2. Для блокировки оптического пути установите заглушки на оптику приемника и передатчика (см. **Рис. 40.** ниже).

Рис. 40. Установка заглушек

- 3. Введите команду **OPEN**, затем команду **LEVEL 1** для получения доступа к командам уровня администратора.
- 4. Введите команду **CALIBRATE CHECK.** Значение, полученное в результате выполнения команды check, должно находиться в диапазоне ±0,0001. Если это не так, возможно, имеется аппаратная ошибка.

5.	Установите матовые стекла как показано на Рис. 41. на стр.
	146. Закрепите стеклянные пластины, заведя их под винты с
	накатной головкой и затянув винты. Запомните значение,
	напечатанное на рассеивающих стеклах, оно понадобится при
	следующих действиях. Удалите заглушки с оптики приемника
	и передатчика.

ВАЖНО Матовые стекла не взаимозаменяемы.

- Удалите пластиковые защитные пластины с посадочной поверхности (3 на Рис. 41. на стр. 146) сборки калибратора на измерительном блоке.
- 7. Установите сборку калибратора на измерительный блок, как показано на **Рис. 41.** на стр. 146.
- 8. Освободите оптическую траекторию.
- 9. Введите команду **CALIBRATE CHECK.** Выполнение команды занимает примерно 90 секунд.
- 10. Значение полученного сигнала должно примерно соответствовать значению, которое указано на рассеивающих пластинах. Если это различие менее 3%, калибровка корректна. В этом случае оставьте матовые стекла на том же месте, запишите значение сигнала и перейдите к выполнению инструкций, приведенных в разделе Процедура проверки механического выравнивания FSM102 на стр. 147. Если различие больше 3%, оставьте матовые стекла на том же месте и продолжайте выполнение процедуры калибровки.

Рис. 41. Сборка и установка калибратора

Процедура калибровки FSM102

Процедура калибровки выполняется следующим образом:

- 1. Выполните шаги, описанные в разделе **Процедура проверки** калибровки FSM102 на стр. 144 (если это не было выполнено ранее).
- 2. Поставьте сборку калибратора на измерительный блок (если это не было выполнено ранее).
- 3. Отойдите от измерительного блока, чтобы не стать причиной возникновения дополнительного рассеяния и введите команду

CALIBRATE VISIBILITY *calibrator_value*

Например,

CALIBRATE VISIBILITY 0.790

ВАЖНО Проверьте правильное значение калибровки, указанное на пластинах матового стекла.

Значение калибровки напечатано на ярлыке, наклеенном на матовое стекло. Когда выполнение команды завершено, датчик FS11 отвечает **DONE**, вычисляет новый коэффициент пересчета и записывает его в энергонезависимую FLASH-память.

4. Оставьте матовые пластины на своем месте и продолжайте выполнение инструкций из раздела **Процедура проверки**

механического выравнивания FSM102 ниже, чтобы выяснить, явилось ли причиной неудачи проверки калибровки неправильное механическое выравнивание.

Процедура проверки механического выравнивания FSM102

Проверка механического выравнивания выполняется следующим образом.

- 1. Выполните проверку калибровки, как указано в разделе **Процедура проверки** калибровки FSM102 на стр. 144 (если не было выполнено ранее).
- 2. Установите шаблонные пластины на пластины калибратора. Для этого необходимо немного ослабить винты с накатной головкой, и вставить под эти винты шаблонные пластины, как показано на **Рис. 42.** на стр. 148. Закрепите шаблонные пластины, затянув винты с накатной головкой.

ВАЖНО	Шаблонные пластины помечены как "RX" и "TX", что обозначает
	приемник и передатчик соответственно.

ВАЖНО Во избежание возникновения царапин на поверхности стекол полоски ленты шаблонных пластин должны быть обращены к стеклу.

- 3. Освободите оптическую траекторию.
- 4. Введите команду **CALIBRATE CHECK.** Выполнение команды занимает примерно 90 секунд.
- 5. Если полученное в результате выполнения команды проверки значение больше 85% значения, зафиксированного без шаблонных пластин, механическое выравнивание выполнено правильно. В противном случае проверьте датчик FS11 и калибратор на предмет дефектов в электронике или механических повреждений. Обратитесь также в ближайший технический центр фирмы Vaisala.
- 6. Разберите калибратор и уберите его в поставляемый ящик для переноски.
- 7. Верните пластиковые защитные пластины на посадочную поверхность сборки калибратора на измерительном блоке.

Рис. 42. Установка шаблонных пластин на матовые стекла

Управляемая процедура калибровки FSM102

Альтернативой описанной выше процедуре калибровки является калибровка, выполняемая интерактивно под управлением инструкций, поступающих от программного обеспечения FS11, как описано ниже.

Управляемая процедура калибровки состоит из трех индивидуальных шагов и требует наличия калибровочного комплекта FSA11.

- На первом шаге производится проверка того, что окна передатчика и приемника очищены.
- На втором шаге проверяется системный сигнал смещения Offset Signal.
- На третьем шаге на измерительный блок устанавливаются пластины матового стекла, чтобы смоделировать определенный рассеянный сигнал с целью проверки или адаптации калибровки видимости.

Если любая из этих проверок оказывается неудачной, она может быть повторена до двух раз. Если любая из этих проверок окончательно проваливается, калибровка видимости измерительного блока объявляется недействительной, и данные признаются некорректными.

Будучи начатой, управляемая процедура калибровки должна быть обязательно завершена либо как удачная, либо как неудачная. Эту процедуру нельзя прервать или приостановить. По окончании управляемой процедуры калибровки генерируется итоговый отчет.

- 1. Введите команду CALIBRATE FS11.
- 2. Прибор отвечает:

```
Step 1/3
Clean Windows and type YES: YES
.....
```

- 3. Очистите окна измерительного блока.
 - Для очистки окон используйте мягкую безворсовую ткань, смоченную несильным моющим средством.
 - Для удаления остатков моющего средства используйте сухую, мягкую, безворсовую ткань.
 - Будьте аккуратны и не поцарапайте поверхность окна.
- 4. BBEQUTE YES и нажмите enter.

Этот шаг тестирования может занять до двух минут.

5. Прибор отвечает:

Step 2/3 Install Zero Plugs and type YES: YES

- 6. Установите заглушки на приемник и передатчик измерительного блока. См. **Рис. 40.** на стр. 144.
- 7. BBEQUTE YES и нажмите enter.
 - Начинается тест нулевого сигнала (Zero Signal Test), ход которого отображается на экране.
 - По окончании теста нулевого сигнала выдается индикация успех/неудача и результирующий нулевой сигнал указывается в скобках.
 - Этот шаг тестирования может занять до двух минут. Step 2/3 Install Zero Plugs and type YES: YES

```
Zero signal test PASSED. (0.0000)
```

8. Прибор продолжает:

- 9. Снимите заглушки с приемника и передатчика измерительного блока.
- 10. Установите сборку калибратора на измерительный блок, как показано на **Рис. 41.** на стр. 146.
 - Сборка присоединена к измерительному блоку, и значение рассеянного сигнала сравнивается с известным смоделированным значением калибровочной сборки (значение сигнала приведено на ярлычке, наклеенном на калибровочную сборку). Тест считается успешным, если измеренное значение рассеянного сигнала отличается от известного смоделированного значения не более, чем на ±3%. Если отличие составляет от ±3% до ±20%, калибровка измерительного блока будет обновлена с учетом параметров использованной калибровочной сборки. Тест считается неудачным, если отклонение превышает ±20%.
- 11. Освободите оптический путь и введите в терминал данных значение сигнала, указанное на калибровочной сборке.
- 12. Подтвердите введенное значение сигнала, введя YES и нажав Enter, или повторно введите значение сигнала после вводе NO и нажатия Enter.
 - Начинается тест рассеянного сигнала (Scatter Signal Test), ход которого отображается на экране.
 - Этот шаг тестирования может занять до двух минут.
 - По окончании теста рассеянного сигнала выдается резюме по результатам тестирования и индикация успех/неудача.

```
Signal test PASSED. (1.3514)
Calibration procedure finished.
Calibration: PASSED.
Zero test: ok (0.0000, limit: absolute +/-0.0001)
Signal test: ok (0.1259, limits: recalibration +/-
0.0300 rejection +/-0.2000)
Remove calibrator assembly and type YES: YES
1>
```

- 13. Снимите сборку калибратора и его кронштейн и уберите их в коробку для калибровочного набора.
- 14. Введите YES и нажмите enter.

Оценка результатов управляемой процедуры калибровки измерительного блока

Калибровка выполнена успешно

Табл. 23. показан пример успешного выполнения процедуры калибровки без перекалибровки датчика видимости.

1> CALIBRATE FS11	
Step 1/3	
Clean Windows and type YES: YES	
Step 2/3	Тест нулевого сигнала и
Install Zero Plugs and type YES: YES	тест рассеянного сигнала выполнены успешно.
lst run	
Zero signal test PASSED. (0.0000)	
Step 3/3	
Remove zero plugs, install glass plates and	
enter signal value (between 0 and 10): 1.3497	
Is signal value 1.349700 correct? Type YES or NO? YES	
lst run	
Signal test PASSED. (1.3514)	
Calibration procedure finished.	Управляемая процедура
Calibration: PASSED.	калибровки успешно
Zero test: ok (0.0000, limit: absolute +/-0.0001)	нулевого сигнала 0,0000, допуск ±0,0001.
Signal test: ok (0.1259, limits: recalibration +/-0.0300 rejection +/- 0.2000)	Отклонение результата теста рассеянного сигнала
Remove calibrator assembly and type YES: YES	перекалибровки ±0,03 (3%). Допуск для отклонения ±0,2 (20%).
1>	

Успешное завершение управляемой процедуры Табл. 23. калибровки

Табл. 24. показан пример успешного выполнения управляемой процедуры калибровки с обновлением калибровки датчика видимости.

Управляемая процедура калибровки, обновление Табл. 24. калибровки

1> CALIBRATE FS11	
Step 1/3	
Clean Windows and type YES: YES	
Step 2/3	Тест нулевого сигнала
Install Zero Plugs and type YES: YES	выполнен успешно.
lst run	
Zero signal test PASSED. (0.0000)	
Step 3/3	Результаты теста
Remove zero plugs, install glass plates and	рассеянного сигнала имеют приемлемое отклонения от
enter signal value (between 0 and 10): 1.2147	значения рассеянного сигнала. Калибровка обновлена, и второй тест
Is signal value 1.214700 correct? Type YES or NO? YES	рассеянного сигнала выполнен успешно.
lst run	
Signal test PASSED. (1.3533)	
Update calibration? Type yes: YES	
2nd run	
Signal test PASSED. (1.2147)	
Calibration procedure finished.	Управляемая процедура
Calibration: PASSED.	калибровки успешно
Zero test: ok (0.0000, limit: absolute +/-0.0001)	завершена Результат теста нулевого сигнала 0,0000, лопуск ±0.0001.
Signal test: ok (0.0021, limits: recalibration +/-0.0300 rejection +/- 0.2000)	Отклонение результата теста рассеянного сигнала
Remove calibrator assembly and type YES: YES	0,0021%. Допуск для перекалибровки ±0,03 (3%). Допуск для отклонения
1>	±0,2 (20%).

Процедура калибровки завершена неудачно

Табл. 25 показан пример управляемой процедуры калибровки, когда тест рассеянного сигнала (а значит и вся управляемая процедура калибровки) оказался неудачным из-за слишком большого отклонения между калибровочными значениями, сохраненными в памяти измерительного блока, и результатами текущей процедуры калибровки.

Табл. 25.	Управляемая процедура калибровки, неудачный
	тест рассеянного сигнала

1> CALIBRATE FS11	
Step 1/3	
Clean Windows and type YES: YES	
Step 2/3	Тест нулевого сигнала
Install Zero Plugs and type YES:	выполнен успешно.
YES	
lst run	
••••••	
Zero signal test PASSED. (0.0000)	
Step 3/3	Тест рассеянного
Remove zero plugs, install glass plates and	сигнала прошел неудачно три раза подряд. Все
enter signal value (between 0 and 10): .8856	измеренные отклонения оказались вне пределов перекалибровки.
Is signal value 0.885600 correct? Type YES or NO? YES	
1st run	Самая распространенная ошибка пользователя (неправильная установка
••••	соорки стеклянной
Signal test FAILED. (1.3497)	подсказка для успешного
Signal change too large. Verify that glass plates are in place.	завершения теста.
Repeat the test? Type YES: YES	Пользователь должен подтвердить перезапуск теста
2nd run	
	такую же неисправность
Signal test FATLED (1 3/197)	может вызвать неснятая
Signal change too large Morify	заглушка.
that glass plates are in place.	
Repeat the test? Type YES: YES	
3rd run	

Calibration procedure finished.	Управляемая процедура
Calibration: FAILED.	калибровки завершилась
Zero test: ok (0.0000, limit: absolute +/-0.0001)	неудачей из-за неудачного теста рассеянного сигнала. Отклонение величины
Signal test: fail (52.4083, limits: recalibration +/-0.0300 rejection +/- 0.2000) Допуск для отклонени ±0,2 (20%).	
Remove calibrator assembly and type YES: YES	
1>	

Табл. 26. показан пример управляемой процедуры калибровки, когда тест нулевого сигнала (а значит и вся процедура калибровки) оказался неудачным из-за слишком большого сигнала в приемнике при заблокированных передатчике и приемнике.

Табл. 26.	Управляемая процедура калибровки, неудачн	ый
	тест нулевого сигнала	

0> LEVEL 1	
Operating level set to: 1	
1> CALIBRATE FS11	
Step 1/3	
Clean Windows and type YES: YES	
Step 2/3	Тест нулевого сигнала
Install Zero Plugs and type YES:	заканчивается неудачно
YES	три раза подряд. Самая
	распространенная ошиока
lst run	установлены заглушки)
	упоминается как подсказка
Zero signal test FAILED. (3.7833)	для успешного завершения теста.
Verify that zero plugs are in	Пользователь должен
place.	подтвердить перезапуск
Repeat the test? Type YES: YES	теста.
2nd run	
Zero signal test FAILED. (3.7829)	
Verify that zero plugs are in	
place.	
Repeat the test? Type YES: YES	
3rd run	

```
Calibration procedure finished.
                                                Управляемая процедура
                                             калибровки завершилась
  Calibration: FAILED.
                                             неудачей из-за неудачного
  Zero test: fail (3.7829, limit:
                                             теста нулевого сигнала.
absolute +/-0.0001)
                                             Измеренное значение
                                             нулевого сигнала
  Signal test: none
                                             составило 3.78.
  Remove calibrator assembly and type
                                             Допустимое значение
YES: YES
                                             \pm 0.0001.
                                               Тест рассеянного
  1>
                                             сигнала был пропущен.
```

Замена модулей FS11

В этом разделе подробно описано, как снять и заменить контроллер FSC102 датчика видимости, модуль передатчика FST102 и модуль приемника FSR102. Вопрос о снятии модулей возникает в тех случаях, когда есть причина подозревать, что неисправность FS11 вызвана дефектами в оптических блоках или в датчике дождя.

ОСТОРОЖНО Обслуживание оборудования должно выполняться только квалифицированным персоналом.

ОСТОРОЖНО Перед выполнением любых процедур, перечисленных в настоящем разделе, необходимо убедиться, что питание (перем. ток) и резервная батарея отключены.

ВАЖНО При замене любого узла следите за тем, чтобы вода или влага не попала внутрь устройства.

Замена FSC102

- 1. Откройте крышку центрального отсека датчика видимости, см. Рис. 44. ниже.
- 2. Убедитесь, что датчик видимости выключен
- 3. Разъедините терминальные разъемы (5 шт.).
- 4. Отключите контрольные кабели приемника и передатчика. Используйте специальные инструменты для снятия блокировки разъемов.
- 5. Отвинтите четыре монтажных винта, удерживающих контроллер датчика видимости.

Рис. 43. Контроллер FSC102 датчика видимости

- 6. Осторожно извлеките контроллер FSC102 из центрального отсека и вставьте запасной модуль. Обращайте внимание на расположение кабелей, чтобы не допустить натяжения или повреждения проводников.
- 7. Вставьте модуль и затяните четыре монтажных винта.
- 8. Вновь подсоедините терминальные разъемы (5 шт.). Обратите внимание на порядок подключения.
 - Начните с разъема №1 (см. Рис. 43. выше).
 - Числа должны возрастать против часовой стрелки.
- Подключите разъемы контрольных кабелей приемника и передатчика. Обращайте внимание на защелкивание блокировочных механизмов разъемов.
- 10. Убедитесь в успешности замены.
 - Повторите неудачные шаги тестирования.
 - Продолжайте поиск неисправности и, если замена не дала нужного результата, верните на место исходную плату.
- 11. После успешного ремонта аккуратно закройте крышку центрального отсека.
 - Обратите внимание на правильное размещение прокладки крышки. Завинтите четыре крепежных винта крышки и затяните их рукой.

Рис. 44. Вид снизу на датчик видимости: винты, закрепляющие крышку центрального отсека

Замена модуля передатчика (FST102) и модуля приемника (FSR102).

- 1. Откройте крышку центрального отсека датчика видимости, см. Рис. 44. Рис. 44.выше.
- 2. Убедитесь, что выключены сетевое питание (перем. ток) и резервная батарея.
- 3. Отсоедините контрольный кабель. Используйте специальный инструмент для снятия блокировки разъема. См. Рис. 45. ниже.

Рис. 45. Контрольные кабели передатчика и приемника датчика видимости

4. Откройте головки передатчика/приемника и снимите концевую заглушку, используйте гаечный ключ на 13 мм.

Рис. 46. Снятие концевой заглушки (показано для передатчика)

5. Разблокируйте модуль передатчика/приемника.

- Снимите соответствующее стопорное кольцо.

Рис. 47. Снятие стопорного кольца модуля (показано для передатчика)

- 6. Завинтите специальный ключ (позиция Vaisala DRW011133) в заднюю панель модуля передатчика/приемника, как показано на **Рис. 44.** на стр. 157.
- 7. Аккуратно выньте модуль передатчика/приемника из головки.
 - Вытолкните контрольный кабель со стороны центрального отсека и приподнимите модуль, чтобы по возможности

открыть доступ к разъему контрольного кабеля. (Вытягивайте модуль передатчика/приемника из оптической головки, одновременно подавая контрольный кабель).

- Модуль передатчика/приемника выдвигается приблизительно на 50%.

Рис. 48. Выталкивание контрольного кабеля в оптическую головку

Рис. 49. Модуль передатчика/приемника, контрольный кабель отсоединен

Следующие цифровые обозначения относятся к Рис. 49. выше:

- 1 = Кабель термистора колпака
- 2 = Контрольный кабель
- 3 = Специальный открывающий ключ
- 8. Используйте специальный инструмент, чтобы разблокировать разъем контрольного кабеля и отсоединить его от модуля передатчика/приемника
- Прикрепите вытягивающий провод (длиной около 1 м) к контрольному кабелю со стороны модуля приемника/передатчика.

Рис. 50. Вытягивание контрольного кабеля из трубы корпуса

- 10. Осторожно вдавите модуль на его место в оптической головке (используйте специальный ключ) и одновременно втягивайте контрольный кабель со стороны центрального отсека до тех пор, пока разъем контрольного кабеля не войдет в трубу корпуса датчика видимости, и можно будет вынуть модуль передатчика/приемника
- Осторожно вытяните модуль передатчика/приемника из головки корпуса датчика видимости и отсоедините термистор колпака перед окончательным удалением. См. позицию №1, Рис. 49. на стр. 160.
 - Используйте специальный инструмент для снятия блокировки стопорного механизма разъема.
- 12. Убедитесь, что уплотнительное кольцо запасного модуля приемника (FSR102)/передатчика (FST102) плотно легло в свою канавку, как показано на Рис. 51. ниже.

Рис. 51. Уплотнительное кольцо модуля передатчика/приемника

- 13. Вставьте запасной модуль приемника (FSR102)/передатчика (FST102) снова соедините разъем термистора колпака.
 - Убедитесь, что блокировочный механизм разъема сработал.
- 14. Полностью вдавите модуль передатчика/приемника в головку корпуса.
- 15. Используйте вытягивающий провод, чтобы втянуть контрольный кабель обратно, пока его разъем не достигнет головки передатчика/приемника
 - Помогайте себе, подталкивая контрольный кабель со стороны центрального отсека.
- 16. Когда разъем контрольного кабеля достигнет головного конца трубы корпуса датчика видимости, начните медленно вытягивать модуль передатчика/приемника из головки (используйте специальный ключ) и еще немного вытяните контрольный кабель.
 - Вытягивайте модуль одновременно с контрольным кабелем до тех пор, пока модуль не выйдет приблизительно на 50% и откроется доступ к разъему контрольного кабеля.
- 17. Снимите вытягивающий провод и снова подключите разъем контрольного кабеля к модулю приемника/передатчика.
 - Убедитесь, что разъем зафиксирован в блокирующем механизме, и осторожно пригните контрольный кабель вблизи от его разъема к концу трубы корпуса датчика видимости внутри головки.
- 18. Осторожно вдавите модуль полностью обратно в оптическую головку (используйте специальный ключ).
 - Проверьте, чтобы между краем и концом модуля передатчика/приемника не было никаких проводов.
 - Помогайте себе, вытягивая контрольный кабель со стороны центрального отсека.
- 19. Удалите специальный ключ с модуля приемника/передатчика и установите стопорное кольцо модуля, чтобы зафиксировать этот модуль в его окончательной позиции.
 - Вставляйте стопорное кольцо осторожно, чтобы не повредить резьбу.
 - Используйте ключ, чтобы затянуть стопорное кольцо вручную.
- 20. Убедитесь, что уплотнительное кольцо концевой заглушки плотно легло в свою канавку, как показано на Рис. 52. ниже.

Рис. 52. Концевая заглушка с уплотнительным кольцом

- 21. Установите концевую заглушку с уплотнительным кольцом.
 - Вставляйте концевую заглушку осторожно, чтобы не повредить резьбу.
 - Используйте ключ, чтобы затянуть концевую заглушку вручную.
- 22. Снова подключите разъем контрольного кабеля приемника/передатчика к контроллеру FSC102 датчика видимости. Убедитесь, что блокировочный механизм разъема сработал.
- 23. Убедитесь в успешности замены.
 - Повторите неудачные шаги тестирования.
 - Продолжайте поиск неисправности, если эта замена не дала нужного результата.
- 24. После успешного ремонта аккуратно закройте крышку центрального отсека.
 - Обратите внимание на правильное размещение прокладки крышки.
 - Завинтите четыре крепежных винта крышки и затяните их рукой. См. Рис. 44. на стр. 157.

Замена предохранителей

Сгоревший предохранитель обычно указывает на повреждение цепи или на какую-либо иную неисправность. В подобный случаях необходимо проверить всю соответствующую цепь. Рис. 53 показано расположение предохранителей на плате FSB103.

Рис. 53. Расположение предохранителей на плате FSP103.

Следующие цифровые обозначения относятся к Рис. 53.

- 1 = Главный прерыватель сети переменного тока
- 2 = Предохранитель Т5А источника питания постоянного тока
- 3 = Предохранитель T5A линии питания нагревателя, зарезервированный для PWD32 (только FS11P)
- 4 = Предохранитель T5A линии питания нагревателя LM21
- 5 = Предохранитель M10A линии питания нагревателя FSM102

ГЛАВА 7 ПОИСК И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

ВНИМАНИЕ

В данном оборудовании имеется опасное напряжение 230/115/100 В перем. тока

осторожно	Обслуживание оборудования должно выполняться только
	квалифицированным персоналом.

ОСТОРОЖНО Перед тем как выполнять процедуры, описанные в настоящем разделе, необходимо убедиться, что питание переменного тока и резервная батарея отключены.

Сообщения об ошибках

Ошибки

Сообщение об ошибке	Вероятная причина	Способ устранения
SENSOR NOT	Измерительный блок FSM102	Проверьте подключение кабелей.
RESPONDING	или датчик яркости фона	Откройте крышку датчика и убедитесь,
	LM21 не отвечают на запросы	что зеленый светодиод мигает, а красный
	FSC202.	светодиод перезапуска не горит. Если это
		не так, то скорее всего неисправна линия
		RS- 485 между FSI102 и датчиком.
		Если все светодиодные индикаторы на
		плате датчика выключены, неисправен
		источник питания. Проверьте
		ПОДКЛЮЧЕНИЕ ЛИНИИ ПИТАНИЯ К ДАТЧИКУ.
	гсазп-памяти, конфигурация	ПОПОЧИТУРАЦИИ С ПОМОЩЬЮ КОМАНДЫ ЗЕТ
	педенетвлена	Измените настройки параметров и
		выполните перезапуск.
		Если ошибка не устраняется, неисправна
		плата контроллера или шина памяти в
		FSM102.
		В FSM102 отсоедините контрольные
		кабели от оптических головок в FSC102 и
		выполните перезапуск.
		Если ошибка исчезла, то скорее всего она
		связана с неполадками кареля, лиро
		передатчик или приемник перегружают
		спростивности прослемную часть можно
		и и паружить, подключая по одному
		проблемы
		проолемы.

Табл. 27. Сообшения об ошибках

Тревоги

Тревожное	Вероятная причина	Способ устранения
сообщение		
TRANSMITTER FAILURE	Передатчик не отвечает	Контрольный кабель между передатчиком и FSC102 не подключен или поврежден, проверьте кабель. Передатчик неисправен, замените модуль породущие EST102
LED FAILURE	Интенсивность светодиода передатчика слишком низкая	Контрольный кабель между передатчиком и FSC102 не подключен или поврежден, проверьте кабель. Передатчик неисправен, замените модуль
RECEIVER FAILURE	Данные от приемника недействительны или не поступают	передатчика FST102. Контрольный кабель между приемником и FSC102 не подключен или поврежден, проверьте кабель.
POWER SUPPLY	Одно из напряжений питания выходит за пределы допустимого диапазона	Приемник неисправен, замените модуль приемника FSR102. Сигнал тревоги в измерительном блоке FSM102: проверьте выходное напряжение пост. тока в FSP103, оно должно быть примерно равным 24 В пост. тока (при функционировании от сети питания перем. тока) или в диапазоне от 11 до 30 В пост. тока (при функционировании от резервной батареи или, например, от солнечной батареи или, например, от солнечной батареи). Если напряжения в норме, отключите контрольные кабели приемника и передатчика. Если проблема исчезла, то скорее всего она была вызвана коротким замыканием в контрольном кабеле или оптическом модуле. Если проблема не исчезла, то она вызвана неполадками платы контроллера. Замените плату FSC102. Сигнал тревоги в интерфейсном блоке:
BACKSCATTER HIGH	Уровень сигнала обратного рассеяния увеличился. Препятствие на оптической траектории	неисправноств платы г ососос, ее необходимо заменить Очистите окна и колпаки оптических головок. Удалите посторонние объекты из измерительного объема.
RECEIVER SATURATED	Уровень внешней засветки в приемнике слишком высок. Это может быть, например, вызвано отражением солнечного света от отражающей поверхности.	Поверните измерительный блок, чтобы сильный отраженный свет не попадали в приемник.
SCATTER SIGNAL SATURATED	Посторонний объект в измерительном объеме, вызывающий мощное рассеяние.	Удалите посторонние объекты и структуры из измерительного объема.

Табл. 28. Сигналы тревоги

Тревожное	Вероятная причина	Способ устранения
TEMPERATURE SENSOR FAILURE	Датчик температуры подстилающей поверхности отключен или неисправен.	Откройте крышку измерительного блока и убедитесь, что датчик температуры подключен к плате FSC102.
		Проверьте сопротивление датчика температуры. Оно должно быть в диапазоне от 80 до 120 Ом. Если это не так, замените датчик.
SIGNAL OFFSET DRIFTED	Смещение сигнала сдвинулось от 0. Может быть, это вызвано наличием поблизости другого прибора, испускающего ИК-излучение, или другими помехами.	Поверните измерительный блок или перенесите датчик подальше от источника ИК-излучения.
CLEAN WINDOW	Обнаружено сильное загрязнение окна. Прибор находится в нерабочем состоянии. Данные недействительны.	Очистите окна датчика в соответствии с инструкциями, приведенной в разделе Очистка окон FSM102 на стр. 141.
TRANSMITTER TOTAL REFLECTION MEASUREMENT FAILURE TRANSMITTER BACKSCATTER MEASUREMENT	Какая-то из подсистем мониторинга передатчика не выдает оперативных данных.	Контрольный кабель между передатчиком и FSC102 не подключен или поврежден, проверьте этот кабель.
FAILURE CLOGGING ALARM	Обнаружен очень интенсивный сигнал обратного рассеяния. Оптическая траектория почти заблокирована. Прибор находится в нерабочем состоянии. Данные недействительны.	Очистите окна и колпаки оптических блоков от таких загрязнений, как снег. Удалите возможные препятствия и очистите окна датчика в соответствии с инструкциями, приведенными в разделе Очистка окон FSM102 на стр. 141.

Предупреждения

Предупреждающе	Вероятная причина	Способ устранения
е сообщение		
WINDOW	Загрязненность окна датчика	Очистите окна датчика в соответствии с
CONTAMINATED	возросла, компенсация	инструкциями, приведенной в разделе
	возможна	Очистка окон FSM102 на стр. 141.
	В прохладную и ветреную	Включите обогрев колпаков.
	погоду, когда обогрев	
	колпаков не включен,	
	обогрев, предназначенный	
	для предотвращения	
	образования конденсата, не	
	может повысить температуру	
	до значения, необходимого	
	для предотвращения	
	образования конденсата, что	
	может привести к выдаче	
	предупреждения WINDOW	
	CONTAMINATED	
BATTERY LOW	Низкое напряжение	Подключите линию сетевого питания или
	резервной батареи (<11 В	замените батарею.
	пост. тока), остающееся	
	время работы ограничено	
	Резервная батарея не	Проверьте позицию переключателя на
	установлена, а	плате FSP103. При использовании
	переключатель линии	сетевого напряжения 100127 В перем.
	питания находится в	тока переключатель должен находиться в
	неверном положении.	положении 115.
LED AGED	Светодиод состарился,	В ближайшем будущем потребуется
	необходимая мощность	замена модуля передатчика FST102.
	возбуждения увеличилась.	
	Оставшееся время работы	
	ограничено.	

Табл. 29.	Предупреждающие	сообщения
1 auji. 27.	предупреждающие	сооощения

Индикация

	Володтная причина	Способ устранения
сообшение	Бероятная причина	Спосоо устранения
WORKING ON BATTERY	Питание от сети (перем. тока) выключено, обогрев колпаков не функционирует	Если это не специально выбранный режим работы, восстановите сетевое питание.
+12V OUTPUT DISCONNECTED	Выход +12 В в интерфейсном блоке отключен из-за короткого замыкания на выходной линии. Это не влияет на выполнение измерений, но заградительные огни или другие опции, подключаемые к этому выходу, функционировать не будут.	Проверьте подключение к контакту +12 VOUT и снимите короткое замыкание или чрезмерную нагрузку. На линии имеется твердотельный предохранитель на 0,9 А. После снятия короткого замыкания перезапустите блок FSC202 или введите команду SET +12VOUT ON для перезапуска питания по контакту +12 VOUT.
HOOD HEATER FAULT	Обогрев колпаков не функционирует. Температура колпаков увеличивается меньше чем на 2 °С в течение	Если датчик питается постоянным током от резервной батареи, отключите обогрев колпаков для предотвращения данной индикации.
	5 минут после включения обогрева схемой автоматического контроля обогрева.	Убедитесь, что желтый светодиод на плате питания интерфейсного блока FSP103 горит. Если это не так, замените предохранитель.
		Визуально обследуйте нагревательную пленку. Если на поверхности наблюдаются черные прожженные области, пленку необходимо заменить. Обратитесь в фирму Vaisala.
		Проверьте подключение проводов в интерфейсном и измерительном блоках.
		Проверьте температуру колпаков, передаваемую в сообщении о статусе, чтобы убедиться, что датчики температуры функционируют нормально. Если какие-либо из температур колпаков нереальны или отсутствуют (/////), это указывает на неисправность датчика температуры. Обратитесь в фирму Vaisala.
FAULT	нагреватель не функционирует. Отсутствие тока во включенном нагревательном элементе.	гроверьте контрольный каоель или соответствующий модуль (FST102 или FSR102).

Табл. 30. Указательные сообщения

Другие неисправности

Проблема	Вероятная причина	Способ устранения
Данные не	Связь не установлена	Проверьте подключение кабелей,
передаются		перезапустите систему.
	Неверные коммуникационные	Проверьте коммуникационные параметры
	параметры	(по умолчанию RS-232/RS-485: 9600/8N1)
		и параметры управления потоком.
		Проверьте подключение кабелей.
		Для предотвращения коллизий в
		полудуплексной шине RS-485 отключите
		перевод строки с помощью
		терминального программного
		обеспечения.
		Если используется модемная передача
		данных, убедитесь, что с обеих сторон
		используются модемы одинакового типа.
		Один из модемов должен быть настроен в
		режиме запроса, другой – в режиме
		ответа.
	Неверная команда запроса	Если включены режимы имитации FD12 и
		MITRAS, датчик FS11 отвечает только на
		запросы, переданные в формате FD12
		или MITRAS соответственно.
	Неверный порт передачи	Запустите терминальную программу и
	данных	включите командный режим по линии
		передачи данных или по сервисной
		линии. Введите команду РАКАМЕТЕК.
		Проверьте, что для передачи данных
		выоран порт DATA, и убедитесь, что
		режим порта данных именно тот, которыи
		нужен.
	датчик выключен или питание	убедитесь, что питание включено и
	на него не подается	светодиод на плате питания FSP103
		горит, а светодиод статуса на
		светодиоды не торят, проверьте
		предохранители на платет ОГ 105 и
При работе с	Используется нерерный	наличие напряжения в Линии. Выберите пункт меню View и пункт
Windows	используется неверный	
HyperTerminal	шрифт	
вместо значений		
вилимости		
отображаются		
точки		
С сервисного	Неверный поспеловательный	Проверьте поспедовательный порт
разъема	порт на хост-компьютере	выбранный в терминальном программном
командный режим		обеспечении.

Табл. 31. Другие неисправности

Проблема	Вероятная причина	Способ устранения
не открывается	Лефект кабеля сервисной	Чтобы убедиться. что с FSC202 все в
	пинии	порялке. попробуйте включить командный
		режим через порт передачи данных
		(подключите компьютер к порту передачи
		данных с помощью разъемов на передней
		панели FSC202).
Значения	Активная тревога (измерения	Проверьте, какие сигналы тревоги
видимости не	недостоверны и не	активны, и устраните причину тревоги.
передаются в	отображаются)	
сообщении		
Сообщения с	Установлен ID устройства	Используйте правильный ID или команду
данными		OPEN * (или OPEN FS), которая
прибывают, но с		открывает командную линию независимо
помощью команды		от ID устроиства. Удалите ID, если он не
ОРЕ командный		требуется.
режим не	Неверные коммуникационные	Проверьте коммуникационные параметры
Открывается	параметры	
		и параметры управления потоком.
		ДЛЯ Предотвращения коллизии в полугуллемской шине RS-485 отключите
		обеспечения.
	Пиния повреждена или	При использовании интерфейсов RS-232
	провода не подключены	или RS-485 проверьте, что светодиод
		ТХD на плате FSC202 мигает при
		передаче символов.
		Проверьте подключение кабелей.
Значения	Имитация тестовых	Введите команду SIMULATE
видимости	сообщений не была	TEST_MESSAGE OFF.
передаются, но	отключена	
являются		
неправильными,		
или не изменяются		l
Светодиод	Предохранитель линии	Проверьте и замените перегоревший
перезапуска внутри	питания переменного или	предохранитель на плате FSP103. Эти
FSI102 не	постоянного тока на FSP103	предохранители показаны на Рис. 53. на
загорается при	вышел из строя	стр. 164.
ВКЛЮЧЕНИИ ПИТАНИЯ		
Светодиод статуса	ИНДИКАЦИЯ НА ПЛАТЕ ГОСССС.	Проверьте содержание индикации в
		сооощении о статусе и следуите
		инструкциям, приведенным выше.
Светолиод статуса	Прелупрежление на плате	Проверьте содержание предупреждения в
внутри FSI102 лает	FSC202	сообщении о статусе и спедуйте
	1 00202.	
волышки вместо		инструкцияни, приводенным выше.
мигания с		
постоянной		
частотой 1 Гц		

Проблема	Вероятная причина	Способ устранения
Светодиод статуса внутри FSI102 дает три короткие вспышки вместо мигания с постоянной частотой 1 Гц	Тревога на плате FSC202.	Проверьте содержание тревожного сообщения в сообщении о статусе и следуйте инструкциям, приведенным выше.
Светодиод статуса внутри FSI102 дает четыре короткие вспышки вместо мигания с постоянной частотой 1 Гц	Ошибка на плате FSC202	Проверьте содержание ошибки в сообщении о статусе и следуйте инструкциям, приведенным выше.

Техническая поддержка

По техническим вопросам обращайтесь в службу технической поддержки компании Vaisala по электронной почте <u>helpdesk@vaisala.com</u>. Предоставьте по крайней мере следующие данные:

- Название и модель неисправного продукта
- Серийный номер продукта
- Название и местоположение места установки
- Имя и контактная информация о человеке, который может дать дополнительную информацию о проблеме.

Возврат продукта

Порядок возврата продукта для техобслуживания описан на сайте www.vaisala.com/services/return.html.

Контактную информацию о центрах обслуживания Vaisala см. на странице <u>www.vaisala.com/services/servicecenters.html</u>.

ГЛАВА 8 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Характеристики

Рабочие характеристики

Свойство	Описание/значение
Диапазон измерений MOR	575 000 м с 1, 3, и 10 минутным
	осреднением
Точность	+10% в диапазоне 5 10 000 м
	+20% в диапазоне 10 000 75 000 м
Точности измерения рассеяния	<u>+</u> 3%
Измерительный интервал	15 секунд

Табл. 32. Рабочие характеристики FS11

Оптические характеристики

Табл. 33.	Общие оптические характеристики	FS11
-----------	---------------------------------	------

Свойство	Описание/значение
Принцип действия	Измерение прямого рассеяния
Угол рассеяния	42 [°]

Свойство	Описание/значение
Источник света	Светодиод ближнего ИК-диапазона
Пиковая длина волны	875 нм
Частота модуляции	2,2 кГц
Диаметр объектива	30 мм
Оптический мониторинг	Контроль стабильности источника света
	Контроль блокировки оптического пути
	Контроль и компенсация загрязненности окна

Табл. 34. Оптические характеристики передатчика FS11

Табл. 35. Оптические характеристики приемника FS11

Свойство	Описание/значение
Фотодиод	PIN 6 DI
Спектральная	Макс. чувствительность 0,55 А/Вт при 850 нм
чувствительность	(свыше 0,3 А/Вт в диапазоне 5501050 нм)
Диаметр объектива	24 мм
приемника	
Оптический мониторинг	Контроль блокировки оптического пути
	Контроль и компенсация загрязненности окна
	Насыщение сигнала фотодиода по пост. току

Электрические характеристики

Табл. 36.	Электрические характеристики FS11

Свойство	Описание/значение
Питание перем. тока	100/115/230 В перем. тока <u>+</u> 10%, 50 - 60 Гц
Потребляемая мощность	370 ВА макс. (50 ВА + 320 ВА
	размораживающие обогреватели) с опциями
	220 ВА максимум (30 ВА + 190 ВА
	размораживающие обогреватели) без опций
Резервная батарея,	Батарея 2 Ач, среднее время обеспечения
опция	резервного питания 30 мин при 25 °C и 5 мин
	при -40 °C
Выходы	Последовательная линия RS-232 или опто-
	изолированная RS-485 (2-проводные) или
	модемная линия (опция)
	Отдельная сервисная линия RS-232 +12 В
	пост. тока, макс. выходной ток 0,8 А для
	дополнительного питания
Выходные данные	Сообщение, содержащее информацию о
	видимости и статусе датчика, выдаваемое по
	запросу или автоматически. Интервал
	передачи сообщений может быть настроен
	пользователем

Механические характеристики

Табл. 37.	Механические характеристики FS1	1
-----------	---------------------------------	---

Свойство	Описание/значение
Размеры (в x ш x г) ¹⁾	2,8 м × 0,9 м × 1,0 м
Масса	52 кг (включая хрупкую мачту FSFM250)
Монтаж	На бетонный фундамент с помощью трех
	болтов диаметром 16 мм
Материал (FSM102)	Анодированный алюминий, белого цвета
Материал (FSI102)	Анодированный алюминий, белого цвета, с
	UV-защитой ABS (радиационный экран)
Мачта	Хрупкая фибергласовая мачта на шарнире

1) 1) Высота х ширина х глубина

Климатические характеристики

Табл. 38.	Условия	окружающей	среды для	FS11
			-r	

Свойство	Описание/значение
Рабочая температура	-40+65 °С, дополнительно -55+65 °С
Рабочая влажность	0100%
Скорость ветра	До 60 м/с
Ориентация по солнцу	Необходимо избегать попадания прямых или
	отраженных солнечных лучей в оптический
	приемник

Электромагнитная совместимость

Датчик FS11 соответствует всем требованиям СЕ. Эта совместимость подтверждена в соответствии со следующими стандартами ЕМС.

Табл. 39.	Соответствие	FS11	требованиям	CE

Объект подтверждения	Стандарт
Испускаемые излучения	EN55022
Восприимчивость к	IEC 61000-4-3, 10 В/м
радиоизлучению	
Кондуктивное излучение	EN55022
Кондуктивная	IEC 61000-4-6
восприимчивость	
Невосприимчивость к	IEC 61000-4-4
импульсным помехам	
Невосприимчивость к	IEC 61000-4-2
электромагнитным	
статическим помехам	
Перенапряжение	IEC 61000-4-5
Гармоники сети питания	IEC 61000-3-2
переменного тока	

Контрольная сумма CRC16

Контрольная сумма CRC16 может быть рассчитана с помощью алгоритма, написанного на языке программирования C:

```
/* 16 bit type */
typedef unsigned short Word16;
/* Calculate CRC-16 value as used in FS11 protocol */
Word16 crc16(const unsigned char *buf, int len) {
       Word16 crc;
       int i,j;
       crc=0xffff;
       for (i=0;i<len;++i) {</pre>
       crc^=buf[i]<<8;
       for (j=0;j<8;++j) {</pre>
              Word16 xmask=(crc&0x8000)?0x1021:0;
               crc<<=1;
               crc^=xmask;
       }
       }
       return crc^0xffff;
}
```

Расчет контрольной суммы начинается после символа ! (начало заголовка) и заканчивается после символа # (конец передачи).
УКАЗАТЕЛЬ

D DMX501 E	56	Блок-схемы FS11 FSR102 FST101	112 116 114
EMC	177	В	
E		Внешние опции	
F		питание	118
FSB101	20, 117	Внешний разъем для подключения	60
	117	Сервисного кареля Внешная засветка	60
Samena Ulloka	100	ИЗМЕДЕНИЕ	61
FSM101	113	Внутренний контроль	01
FSP103	118	загрязненность и блокировка оптики	132
FSR102	115	Внутренний мониторинг	122
замена модуля	158	CRC16	138
FST102		аналоговые интерфейсы	136
замена блока	156	интенсивность излучения передатчи	ka
н			134
	400	ИСТОЧНИКИ ПИТАНИЯ	136
HMP45	128	контрольная сумма	130
HMP45D	118, 128	мониторині сигнала	134
L		пагреватели работа программы	137
I M21	23 61 100	Связь	138
	23, 01, 100	Выбор кабелей	27
Μ		Выбор кабеля	
MOR	122	коммуникационный кабель	29
P		Выбор кабеля питания	29
F		выключение	65
PT100	118	д	
R		Датчик температуры поверхности	137
RS-232	53, 64, 104	Датчик яркости фона 61,	, 100
RS-485	54	Дополнительная комплектация	20
v		Достоверность данных	138
Vaisala	104	3	
Α		Заводские значения параметров Заглушки	110 144
۸	05	Загрязнение окна	177
Автоматический режим	95	измерение	132
ліпаратный контроль потока	55	принцип измерения	115
Б		Загрязненность окна	
Батарея	25, 117	компенсация	133

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Заземление	25
Заземление и защита от молний	25
заземление хрупкой мачты	37
Заземление хрупкой мачты	37
Заземляющий кабель	25
Замена приемника и передатчика	156
Запрос	
сообщение	97
Запрос, режим запроса	97
Запуск	64
Зарядное устройство QBR1010	20
Значения параметров по умолчанию	110
И	
Измерение обратного рассеяния 113	3, 132
Интерфейсный блок	
кабельные входы	48
Информация о хранении	24

Информация о хранении

К

Кабели	
длина	29, 52
заземление	25
кабель питания	27, 49
коммуникационный кабель	29
подключение	48
СВЯЗЬ	51
Кабельные входы	49
Калибровка	143
видимость	143
измерение загрязненности окна	141
измерение обратного рассеяния	141
общие положения	143
проверка 144, 144, 1	146, 147
Калибровочный комплект	143
Коды аварийного статуса	82
командный режим	67
Командный режим	105
закрытие	106
открытие	105
уровень администратора	106
уровень пользователя	106
Команды	
ввод	67
Команды	
командный режим	67
Команды	- 4
уровень пользователя	/1
Команды	70
высокии уровень	73
команды	
автоматическое завершение	11
команды	70
	/ð 400
компенсация загрязненности	133
	11/
контроль загрязненности	132
контроль памяти	137

Контрольная сумма Контрольная сумма CRC16	79 178
Конфигурация система	99
Конфигурация	99
Конфигурация дополнительный датчик	100
М	
Матовые стекла Мачта	145, 146
алюминий	37
хрупкая Метеоропогическая дальность вид	120 имости
	122
Механическая структура Модем DMX501	18
многоточечное модемное подкл	ючение
	59
подключение Модем DMX501 (опция)	57 56
н	
Нагреватель	
колпак	117
противоконденсатный	117
Статус	128, 129
пастроики	100
последовательная связь	53
Настройки связи, по умолчанию	53
0	

Обслуживание проверка механического выравнивания 145, 147 ОБСЛУЖИВАНИЕ 141 Описание встроенного программного обеспечения 121 Описание программного обеспечения 121 Опора для наклона мачты 35 Опорная плита, бетон 31 Ориентация 22 Основание 35 Отражения 22 141, 144, 168, 169 Очистка Ошибка 138 журнал 130 причины

п

Параметры	
настройка	109
отображение	109
Параметры системы	99
Передатчик	113
Плата контроллера	117, 118
по умолчанию	104

Подключение	
модем	57
фотопереключатель день/ночь	62
Подключение кабелей	48
Поиск и устранение неисправностей	165
Последовательная многоточечная пе	ередача
через RS-485	54
Последовательная передача через R	S-232
	53, 64
последовательная связь	104
Последовательность, измерение	121
Предохранители	
расположение	164
Предупреждения	169
Приемник	115
Принцип измерения 1	11, 121
Принцип работы	112
Протокол связи	
RS-232	54
RS-485	54
Процедура калибровки видимости	146
Процедура проверки калибровки 14 147	44, 146,

Ρ

Радиационный экран	40
Расположение	22, 41
Расчеты	122
Резервная батарея	19, 25
Резервный аккумулятор QBR101	120

С

Сборка FS11	35
Светодиод	
передатчик	113
статус	138
Сервисный терминал	
подключение сервисного термин	ала 59
Сетевой источник питания FSP103	118
Синхронный усилитель	114, 121
Скорость передачи	
по умолчанию	53
Сообщение	
автоматическая передача	95
индикация	170
контрольная сумма	79
предупреждения	169
ручная имитация	103
типы	79
тревога	166
форматы	79
эмуляция FD12	80, 89
эмуляция MITRAS	80, 92
Сообщение о статусе	
сигналы тревоги	130
указания	131
Сообщение о статусе	

ошибки	130
	123
	101
предупреждения	101
Сообщение об эмуляции	105
фрайми 76	107
френив 70, Сообщения о статусе ES11	107
	120
	F143/
	(1432
Способы передачи данных	52
Схема безопасности	137
	107
т	
Тестирование	
запуск	64
система RVR	101
фиксированное тестовое сообщение	102
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	175
Типы сообщений	
FD12 сообщение 2	90
FD12 сообщение 7	91
двухбазовый вариант MITRAS	94
ручное сообщение имитации	103
сообщение FS11 с LM21	83
сообщение о нескомпенсированных	
значениях	87
сообщение о статусе	84
стандартное сообщение системы Vai	sala
	89
фиксированное тестовое сообщение	102
Тревоги	167

у

Указания	170
Установка	
датчик яркости фона	61
модемный модуль	57
расположение и ориентация	22, 41
фотопереключатель день/ночь	61
Установки	
начальные	65
Утилизация	13

Φ

Фотопереключатель	61
Фотопереключатель день/ночь	101
Фреймы сообщений	76, 107
Фундамент	31
Функциональное описание	
измерительный блок FSM101	113
интерфейсный блок FSI102	117
x	

Характеристики	175
Хрупкость	120

ш

Шаблонные пластины

Э

148

Электромагнитная совместимость	177
Эмуляция FD12	80, 89
Эмуляция MITRAS	80

www.vaisala.com