

АКТУАЛЬНЫЕ ВОПРОСЫ ДИНАМИКИ РЕЧНЫХ ПЛЮМОВ В ПРИБРЕЖНОЙ ЗОНЕ МОРЯ

«ВОЗДУХ, ВОДА И УСТОЙЧИВОЕ РАЗВИТИЕ»

29-31 октября 2024 года, г. Санкт-Петербург

Спутниковые измерения взвеси

Перенос плюмами загрязнений в растворенной и взвешенной формах

Завьялов П.О., Завьялов И.Б., Ижицкий А.С., Ижицкая Е.С., Коновалов Б.В., Кременецкий В.В., Немировская И.А., Часовников В.К., 2022. Оценка загрязнения Керченского пролива и прилегающей акватории Черного моря по данным натурных измерений 2019–2020 гг. // Океанология, т. 62, 2, с. 194-203, DOI: 10.31857/S0030157422020174

Вынос реками загрязнений в море

Черное море. 18 мая 2010 г.

Сr – 1.19 ПДК

Металлы в растворенной и сорбированной формах, μg/l

Parameter	Min	Max	Mean	MPC
Параметр	Минимум	Максимум	Среднее	ПДК** Мг/л
Detergents AПAB*, мг/л	< 0.01	0.046	0.016	0.1 мг/л
Медь(Си) мкг\л	<0,5	2.72	0.78	5 мкг/л
Цинк (Zn) мкг\л	<1	11.80	4.33	50 мкг/л
Кадмий (Cd) мкг\л	0.20	2.20	0.55	10 мкг/л
Свинец (Рb) мкг\л	2.00	24.31	5.50	10 мкг/л
Никель (Ni) мкг\л	3.00	31.16	13.80	10 мкг/л
Хром (Cr) мкг\л	1.50	23.84	6.52	20 мкг/л
Кобальт (Со) мкг\л	3.00	22.34	8.14	5 мкг/л
$\Gamma X Б, н \Gamma / д M^3$	< 0.10	4.00	0.85	Отсутствие
α-ГХЦГ (α-НСН), нг/дм ³	< 0.10	8.30	1.91	Отсутствие
ү-ГХЦГ (ү-НСН), нг/дм ³	< 0.10	34.10	1.72	Отсутствие
β-ГХЦГ (β-НСН), нг/дм ³	< 0.10	1.40	0.17	Отсутствие
4,4'-DDE, нг/дм ³	< 0.10	4.00	0.40	Отсутствие
4,4'-DDD, нг/дм ³	< 0.10	4.40	0.24	Отсутствие
4,4'-DDT, нг/дм ³	< 0.10	12.30	0.72	Отсутствие
Σ (DDE, DDD, DDT), нг/дм ³	< 0.10	12.80	1.17	Отсутствие
Σ XOΠ (Σ Pesticides), нг/дм ³	< 0.10	34.30	5.58	10 нг/дм ³

Перенос взвеси и внутренняя структура плюмов

Zavialov, P.O., Pelevin, V.V., Belyaev, N.A., Izhitskiy, A.S., Konovalov, B.V., Krementskiy, V.V., Goncharenko, I.V., Osadchiev, A.A., Soloviev, D.M., Garcia, C.A.E., Pereira, E.S., Sartorato, L., Moller Jr., , O.O., 2018. High resolution LiDAR measurements reveal fine internal structure and variability of sediment-carrying coastal plume, *Estuarine, Coastal and Shelf Science*, 205, 40-45, doi:10.1016/j.ecss.2018.01.008.

Распределения взвеси в прибрежной зоне Черного моря

Main parameters of the lidar UFL-9:

- Laser wavelengths 354 and 532 nm.
- Frequency of sounding 2 Hz.
- Energy in a pulse 2+2 mJ.
- Duration of sounding pulse 6 ns.
- Entrance aperture of the receiver 140 mm.
- Working distance range 2 50 m.
- Number of spectral receiver channels – 11.
- Weight of the device 35 kg.
- Power supply 220 AC / 12 DC.
- PC-controlled.
- GPS geo tagged.
- Water-proof housing, working at any weather or sunlight conditions.

79,387 одновременных определений TSM и TOC в течение суток

Четыре внутренних области плюма

- No stratification. Salinity close to zero. Area less than 2% of the total plume area accounts for about 14% of total suspended matter (TSM) removal from surface layer, mainly because of gravitational settling.

I - Stratification develops in the bottom layer. The area is responsible for about 30% of both TSM and total organic carbon (TOC) content and over 50% of TSM loss, mainly due to turbulent mixing.

III - Shallowing of the plume-affected layer and increase of salinity oceanward. Elevated spatial variability of TSM and TOC concentrations. About 25% of TSM removal from the upper layer takes place here.

 IV – Salinity and thickness of the plume-affected layer almost uniform. Only about 10% of the TSM removal takes place in this part of plume.

Лагранжева модель речного плюма

Osadchiev, A.A., and P.O. Zavialov, 2013. Lagrangian model of a surface-advected river plume. *Continental Shelf Research*, **58**, 96–106, <u>doi: 10.1016/j.csr.2013.03.010</u>

Numerical modeling

Plume dependence on Coriolis parameter

Влияние плюма на кроссшельфовый перенос

Zavialov, P.O., A.S. Izhitskiy, and R.O. Sedakov, 2018. Sea of Azov waters in the Black Sea: Do they enhance wind-driven flows on the shelf? IN: M.G. Velarde, R.Yu. Tarakanov, A.V. Marchenko (Eds): The Ocean in Motion. Circulation, Waves, Polar Oceanography, 978-3-319-71933-7, Springer, ISBN 978-3-319-71934-4, DOI: 10.1007/978-3-319-71934-4, pp. 461-474.

Вертикальная структура – поперечный берегу разрез от м. Чауда

Модель

Уравнения движения

 $\mu_1 \frac{\partial^2 u_1}{\partial z^2} = g \frac{\partial h}{\partial x}$ $\rho_2 \mu_2 \frac{\partial^2 u_2}{\partial z^2} = g \rho_1 \frac{\partial h}{\partial x} - g (\rho_2 - \rho_1) \frac{\partial \xi}{\partial x}$

Уравнения неразрывности

$$\frac{\partial w_1}{\partial z} = -\frac{\partial u_1}{\partial x}$$
$$\frac{\partial w_2}{\partial z} = -\frac{\partial u_2}{\partial x}$$

Граничные условия

$$\mathbf{1.} \qquad \rho_1 \mu_1 \frac{\partial u_1}{\partial z}|_{z=0} = \tau,$$

2.
$$u_2(D) = 0$$

3.
$$w_2(D) = 0$$
,

- 4. $\frac{w_1(\xi)}{u_1(\xi)} = \xi'(x),$
- 5. $\frac{w_2(\xi)}{u_2(\xi)} = \xi'(x),$

6.
$$\rho_1 \mu_1 \frac{\partial u_1}{\partial z}|_{z=\xi} = \rho_2 \mu_2 \frac{\partial u_2}{\partial z}|_{z=\xi}$$

Решение

$$u_{1}(x,z) = \frac{S_{1}(x)}{2}z^{2} + A_{1}z + B_{1}(x),$$
$$u_{2}(x,z) = \frac{S_{2}(x)}{2}z^{2} + A_{2}z + B_{2}(x),$$
$$w_{1}(x,z) = -\frac{S_{1}'(x)}{6}z^{3} - \frac{A_{1}'(x)}{2}z^{2} - B_{1}'(x)z + C_{1}(x),$$
$$w_{2}(x,z) = -\frac{S_{2}'(x)}{6}z^{3} - \frac{A_{2}'(x)}{2}z^{2} - B_{2}'(x)z + C_{2}(x).$$

где

 $S_{1}(x) \equiv \frac{g}{\mu_{1}} \frac{\partial h}{\partial x},$ приче $S_{2}(x) \equiv \frac{\rho_{1}}{\rho_{2}} \frac{\mu_{1}}{\mu_{2}} S_{1} - \frac{g}{\mu_{2}} \frac{\Delta \rho}{\rho_{2}} \frac{\partial \xi}{\partial x}, \Delta \rho = \rho_{2} - \rho_{1},$ $A_{1} = \frac{\tau}{\rho_{1} \mu_{1}},$ $A_{1} = \frac{\tau}{\rho_{1} \mu_{1}},$ $A_{2}(x) = \frac{\rho_{1}}{\rho_{2}} \frac{\mu_{1}}{\mu_{2}} [S_{1}\xi + A_{1}] - S_{2}\xi,$ $B_{2}(x) = -\frac{S_{2}}{2} D^{2} - A_{2}D,$ $C_{1}(x) = \frac{\mu_{1}}{g} S_{1}B_{1},$ $\xi B_{1}' = C_{2}(x) = \frac{S_{2}'}{6} D^{3} + \frac{A_{2}'}{2} D^{2} + B_{2}'D,$

причем функции
$$S_1(x)$$
 и $B_1(x)$ суть решения следующих уравнений:

$$S_1' \left[-\frac{rD^3}{3} + \frac{rD^2}{2} \xi - \frac{r\xi^3}{6} \right] + S_1 [\xi + 2D^2D'r - \frac{\xi\xi^2}{2} + \frac{\xi'D^2}{2}r] + F = 0, \quad \text{где}$$

$$F = \frac{2}{3} \alpha \xi^3 \xi'' + \alpha \left(D^2 - \frac{\xi^2}{2} \right) (\xi')^2 + D'r \frac{\tau}{\rho_1 \mu_1} (D - \xi) - \alpha \xi'' \xi^2 D - \alpha \xi' \xi^2 D' - \frac{\alpha}{2} \xi'' \xi D^2 - 3DD' \alpha \xi' \xi - \frac{2}{3} \alpha D^3 \xi'' - 2D^2 \alpha D' \xi' - \frac{\alpha}{2} (\xi')^2 \xi^2 - \xi' \frac{r\tau}{\mu_1 \rho_1} (D + \xi) - D\alpha (\xi')^2 \left(\xi + \frac{D}{2} \right), \quad r = \frac{\rho_1 \mu_1}{\rho_2 \mu_2}, \quad \alpha = \frac{g}{\mu_2} \frac{\Delta \rho}{\rho_2}.$$

Зависимость переноса от отношения вязкостей в двух слоях

ПЕРИОДИЧЕСКИЕ КОЛЕБАНИЯ УРОВНЯ МОРЯ В РЕЧНЫХ ПЛЮМАХ

Zavialov, P.O., 2021. Are periodic oscillations of sea surface height inherent to river plumes? Front. Mar. Sci. 8:679323. doi: 10.3389/fmars.2021.679323

Исходные данные

Высокочастотная составляющая

Период и амплитуда в зависимости от горизонтального масштаба плюма

<u>Речные плюмы в прибрежной зоне моря</u>

- Переносят большую часть антропогенных загрязнений и терригенных веществ;
- В существенной степени воздействют на литодинамические процессы;
- Влияют на прибрежную морскую циркуляцию и модулируют кроссшельфовые обмены;
- Создают пульсации уровня моря и являются источниками кинетической энергии при генерации внутренних волн.

Для выхода на новый уровень понимания закономерностей динамики плюмов, механизмов их генерации и влияния на морскую и речную среду, целесообразно выполнить натурные эксперименты совместными усилиями океанологов и гидрологов суши с одновременными измерениями «по обе стороны устья».

Спасибо за внимание!