
Диффузное загрязнение водных объектов и перспективы его снижения на основе применения природоподобных технологий.

С.В. Ясинский, Е.А.Кашутина, Е.С.Гришанцева, М.В.Сидорова

Институт географии РАН

Диффузное загрязнение водных объектов

Отсутствие улучшения качества воды водных объектов России несмотря на спад промышленного производства в 1990-е годы показало наличие проблемы диффузного загрязнения

Нет государственного мониторинга (никак не учитывается и не контролируется)

Основной источник сельскохозяйственные ландшафты и городские территории

Сложно оценить вклад антропогенной составляющей

Алгоритм расчета по ландшафтно-гидрологическому методу

1-3 этап (сбор исходной информации)

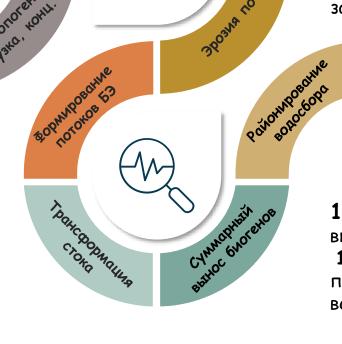
- 1. По картам и космическим снимкам выделяется основной водосбор и частные водосборы
- 2. Выявляется структура и площадь входящих в частные водосборы ландшафтов (лес, поля, урбанизированные территории, гидрографическая сеть и др.)
- 3. Задаются концентрации биогенных элементов для естественных ландшафтов, расчет поступления биогенных элементов от антропогенных источников

Границы водосборов

Структура ландшафта

7-9 этап (расчет выноса биогенных элементов)

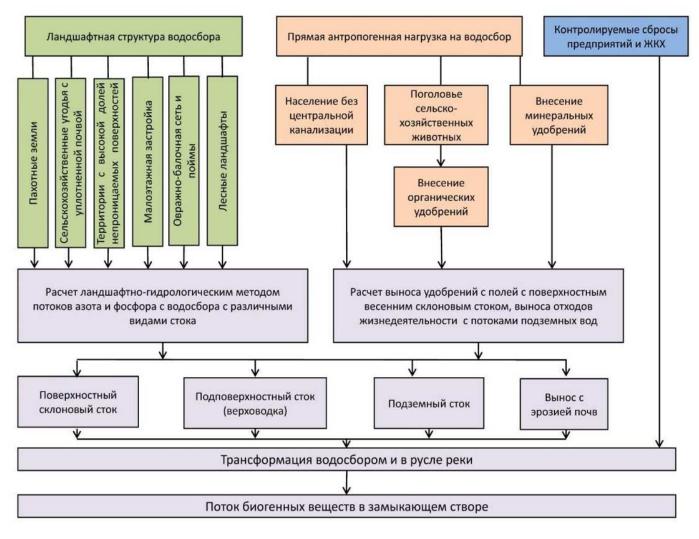
- **7.** Расчет суммарного выноса биогенных элементов с водосбора по видам стока и сезонам
- **8**.Учет трансформации стока биогенных элементов
- 9. Оценка суммарного выноса биогенных элементов в водный объект


4-6 этап (оценка потоков воды и эрозии)

- **4.** Для каждого типа ландшафта, рассчитывается величина склонового стока за весеннее половодье по зависимости от речного стока в этот период
- **5**. Оценка объема стока верховодки, подземных вод за половодье. Оценка годового стока.
- **6.** Эрозия почвы рассчитывается по зависимости от величины склонового стока

Оценка вклада различных источников

10-11 этап (анализ результатов)


- 10. Районирование водосбора по модулю выноса биогенных элементов
- 11. Оценка вклада различных источников в поступление биогенных элементов с водосбора в водный объект

Модель ЛГМ2- ИГРАН

Роль ландшафтной структуры в формировании потоков вещества с водосборов в водные объекты

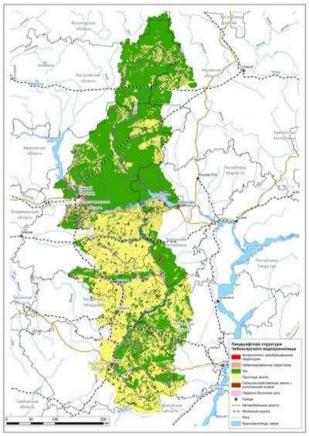
Роль неконтролируемых антропогенных источников в формировании потоков вещества с водосборов в водные объекты

Способы снижения диффузного загрязнения

- Перенос загрязняющих веществ ЗВ в разных формах, имеющих разную токсичность. Растворенные и взвешенные формы.
- Вклад микро- и нановзвесей в перенос веществ в водной среде, опасность этих фракций.
- Микропластик тоже взвесь!
- Проблемы оценки роли взвесей: отсутствие мониторинга, переходы ЗВ из одной фазы в другую.

Учет антропогенных факторов обуславливающих вынос биогенных веществ на примере р.Кудьма

• Количество внесения минеральных удобрений

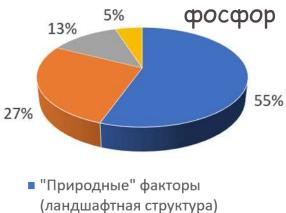


02,55 10

Численность птицы и скота разных видов (КРС, козы и овцы, свиньи, кролики)

Расчет выноса биогенных веществ по ЛГМ для бассейна Чебоксарского водохранилища

Местный водосбор Чебоксарского водохранилища (без Оки) 131 тыс. $км^2$,


Ландшафтная структура водосбора Чебоксарского водохранилища

Сток минерального азота и фосфора от диффузных источников в Чебоксарское водохранилище и его источники

Подводосбор	Вынос азота, т/год*
Весь водосбор	23331
Водосборы левого берега	11023
Водосборы правого берега	12308

	6%	азот
22%		
11%		61%

Подводосбор	Вынос фосфора, т/год*
Весь водосбор	1099
Водосборы левого берега	563
Водосборы правого берега	536

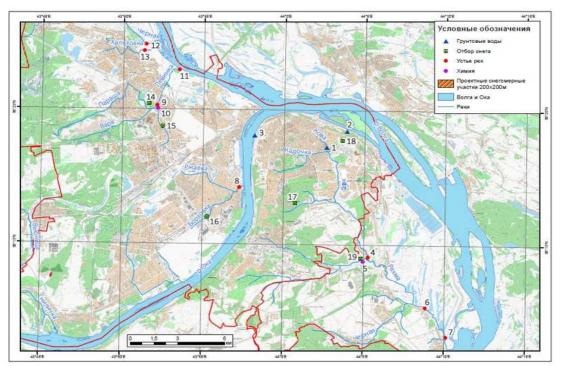
- отходы животноводства и птицеводства
- внесение минеральных удобрений
- отходы жизнедеятельности сельского населения

Наиболее остро проблема оценки объема и состава ЗВ при диффузном загрязнении водных объектов стоит для урбанизированных территорий России.

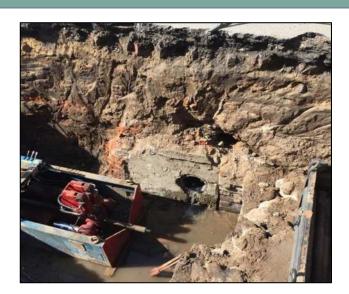
Характерная проблема: городов:

Отсутствует мониторинг снежного покрова, гидрологический и гидрохимический мониторинг поверхностных и подземных вод.

Особенности диффузного загрязнения в городах


- ✓ Поверхностный загрязненный склоновый сток при ливнях и снеготаянии, поступает либо напрямую, либо через ливневую канализацию в малые реки города.
- ✓ В ливневую канализацию попадают и воды от объектов ЖКХ, от несанкционированных сбросов от различных водопользователей.
- ✓ Особенность города атмосферные выпадений, мусор, эрозия, выбросы транспорта, несанкционированные свалки и т.д.

Особенности диффузного загрязнения в городах



В разные фазы водного цикла в период 2020-2023 гг.

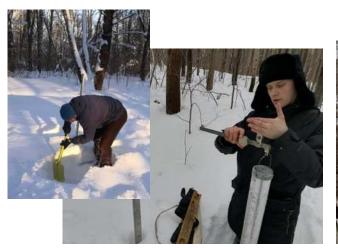
- Оценены снегозапасы (снегосъемки)
- Измерены расходы воды.
- Отобраны пробы речных вод, снега
- Взяты пробы подземных вод (родники, ливневая канализация, штольни искусственные подземные сооружения Нижнего Новгорода)
- Отобраны пробы в отстойниках ливневой канализации, донных отложений малых рек
- В пробах воды определялись:
- концентрации взвешенных веществ и их дисперсный состав;
- БПК5, ХПК;
- ионы аммония, *С*ПАВ, фенолы, нефтепродукты;
- микроэлементы: Mn, Fe, Co, Ni, Cu, Zn, Cd, Al, Pb, As, Cr, Na, K, Mg, Ca, Sr, Ba, Si, Ag;
- анионы: хлориды, сульфаты, нитраты, фосфаты, нитриты.

Концентрации компонентов в водных объектах определялись в растворах и в разных размерных фракциях взвесей

Полевые обследования

Участок отбора пробы в точке Т1 (Вход) р. Кова

Отбор пробы в дождеприемнике в точке ТЗ Вход.(р.Левинка)


Отбор проб в Т2 колодец (р. Борзовка)

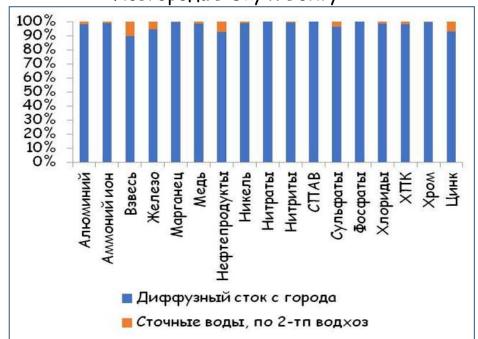
Отбор пробы в водовыпуске в точке ТЗ Выход(р.Левинка).

Отбор проб на микропластик в р.Кова

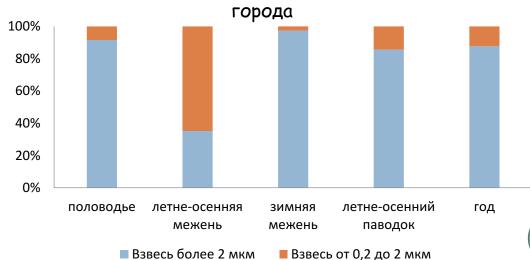
Снего

Измерение расхода воды в р. Параша

Измерение расхода воды в р.Черная


Снегомерная съемка (парк Дубки)

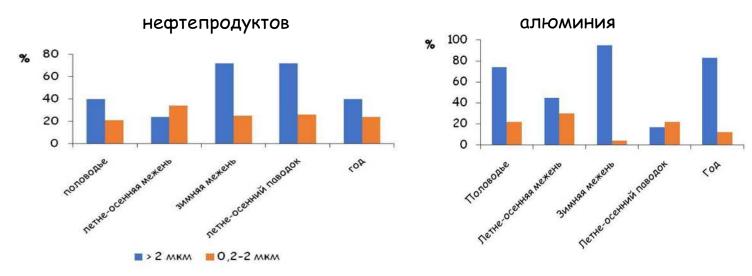
Годовой вынос ЗВ в растворенной форме и в ассоциациях со взвесями с поверхностным и подземным стоком с территории Нижнего Новгорода,


т/год

•			подземные
	Показатель	речные воды	воды
	Взвесь крупнее 2 мкм	2091	17
	Взвесь от 0,2 до 2 мкм	294	5
	Хлориды	5530	2547
	Сульфаты	4821	1764
	ХПК	4774	1707
	Кальций	4587	3641
	Натрий	2709	435
	Магний	1432	1674
	Нитраты	1188	1308
	Фосфаты	715	2
	Калий	480	141
	Железо	322	0
	Кремний	136	76
	Аммоний ион	103	0
	БПК5	68	40
	Нитриты	45	1
	Марганец	38	4
	Алюминий	33	0
	Стронций	30	21
	Нефтепродукты	25	1
	Барий	6.8	10
	СПАВ	4.9	0.5
	Цинк	2.3	0
	Медь	1.7	0
	Хром	1.3	0
	Молибден	0.8	0
	Никель	0.7	0
	Кобальт	0.5	0
	Свинец	0.2	0
	Серебро	0.2	0.1
	Ванадий	0	0
	Кадмий	0	0
	Мышьяк	0	0

Вклад диффузного стока и контролируемых источников в вынос веществ с территории Нижнего Новгорода в Оку и Волгу

Содержание взвесей разного размера в малых реках


Роль взвесей разной крупности в выносе загрязняющих веществ в Оку и Волгу

Интегрально за год

Вынос ЗВ взвесями с речным стоком за год, %

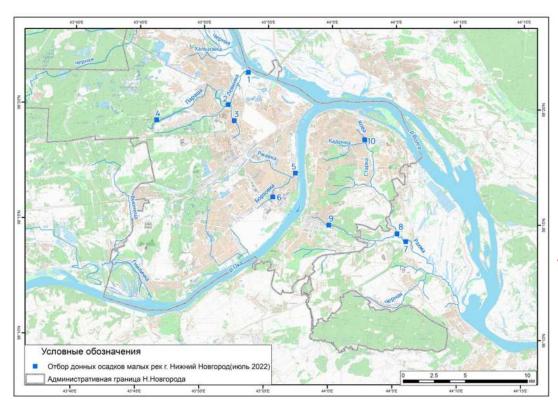
Показатель	Крупность взвеси	
	Более 2 мкм	0,2-2 мкм
Алюминий	83	12
Железо	82	12
Хром	84	10
Кобальт	39	61
Цинк	63	17
Кадмий	100	0
Никель	76	24
Марганец	27	8
Нефтепродукты	40	24
СПАВ	62	11

Сезонный вынос со стоком малых городских рек

Вынос ЗВ взвесями с подземным стоком, %

Показатель	Крупность взвеси	
	Более 2 мкм	0,2-2 мкм
Марганец	79	3
Хром	100	0
Нефтепродукты	50	25
СПАВ	100	0

Вынос ЗВ взвесями со стоком в искусственных подземных сооружениях (штольнях), %


Показатель	Круг	Крупность взвеси	
	Более 2 мкм	0,2-2 мкм	
Алюминий	100	0	
Железо	100	0	
Марганец	45	3	
Цинк	38	2	
Нефтепродукты	95	5	1
СПАВ	84	16	

Результаты исследования

- Принятые в государственной сети мониторинга страны практики анализа состояния окружающей среды могут недоучитывать транспорт взвешенных наносов в реках и не обеспечивать контроль переноса загрязнений взвесями.
- Э Значительна роль взвесей в транспорте металлов, нефтепродуктов, поверхностно-активных веществ. При уменьшении размеров частиц-переносчиков до микронного уровня происходит резкое увеличение их сорбционной емкости и потенциальной способности к переносу загрязнений, проникновению в пищевые цепи, а также возможности «ускользать» от применяющихся систем очистки воды.
- У Микровзвеси переносят большое количество загрязняющих веществ, которые обычно не учитываются в стандартных анализах.
- У Отсутствие общепризнанных, унифицированных, регламентированных подходов к определению доли загрязняющих веществ в составе частиц различной размерности затрудняет сопоставление результатов, полученных различными учеными.

Исследования речных взвесей разного диапазона размерности необходимы для формирования научных представлений о процессах загрязнения окружающей среды и выработки адекватных мер по их смягчению.

Загрязнения в донных отложениях малых рек

Карта отбора проб донных отложений малых рек г. Нижний Новгород

- Диагностирована высокая степень антропогенной нагрузки
- → Некоторые реки находятся в опасной санитарнотоксикологической обстановке (элементы 1-го класса опасности (Hq, Tl, Be)
- **устьевые зоны рек** являются своеобразными геохимическими барьерами на которых происходит аккумуляция тяжелых металлов.

$N_{\underline{o}}$	место отбора	формула геохимической ассоциации	Z_c
1	устье р. Левинки	Hg _{4.2} -(Al, Mn) _{1.6} -Ni _{1.5}	5,9
2	р. Параша, около автомобильного моста	Ti _{2.5} -(Be, Nb) _{2.3} -Al ₂ -V _{1.6}	6,7
3	р. Левинка, около лицея	W _{5.6}	5,6
4	р. Параша	Mo _{3.3} -Be _{2.8} -(Hg, Cd, Pb) _{2.6} -As _{2.5} -Co _{2.4} -Zn _{1.7} -Sb _{1.5}	14
5	устье р. Ржавки	Mo _{7.9} -W ₅ -(Cd, Sb) _{4.5} -Pb _{3.5} -(Zn, Hg) ₃ -(Mn, Cr, Cu) _{2.9} - (As, Co) ₂ -(Ba, Ni, Ti) _{1.5}	34,6
6	р. <u>Борзовка</u> , в парке «Дубки»	$Cu_{15.3}$ – $(Tl, Cr, Mo)_{13}$ – $(Ni, Sb)_{10}$ - $(Pb, Hg)_{9}$ – Zn_{8} – $(Co, Cd)_{5.7}$ – $W_{4.7}$ – $Be_{3.8}$ – As_{3} - $Ba_{2.3}$ – $Nb_{1,5}$	112
7	р. Старка после впадения р. Рахмы	Ti _{2.6} -Cd _{2.4} -(Nb, Tl) ₂ -(Ag,Al) _{1.7}	7,4
8	р. Старка перед впадением в р. Рахму	Ti _{4.1} -Nb _{3.5} -(Mn, Co, Ag) _{2.6} -(Be, Al, Cr) _{2.3} -Sb ₂ - (Ni, Pb, V) _{1.8} -(Ba, Hg, Zn) _{1.6}	20,5
9	верховье р.Рахмы	Sb _{5.5} -Cu _{3.7} -Cd ₃ -Hg _{2.6} -W ₂ -(Pb, Zn) _{1.6} - (Mo, Tl) _{1.5}	15
10	р. <u>Кова</u>	Sb _{17.7} -(Ti, W, Zn) _{2.3} -(Hg, Cu, Pb, Tl, Co, Mo) ₂ - (Cd, Nb, Cr) _{1.7} -V _{1.5} -Ni _{1.4}	30,6

Загрязнения в осадке ливневой канализации

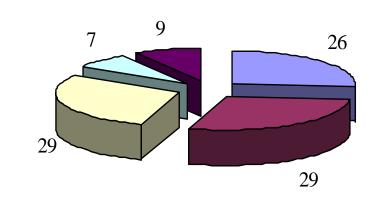
Карта-схема ливневой канализации и водосборного бассейна очистных сооружений

Главный вклад в токсикологическую активность осадка дают нафталин, антрацен и дибензантрацен, содержание которых значительно превышает пороговый уровень негативного токсического воздействия на гидробионты (ERM).

Массы загрязняющих веществ, поступающие за год с территории г.Нижний Новгород в составе диффузного загрязнения

	тяжель	е меташы (кг)	
Be	31,0	As	250,8
Hg	5,9	Pb	2243,9
ŢĮ	5,6	Sr	6302,7
V	4138,0	Mo	75,9
Cr	3505,1	Ag	15,2
Co	528,0	Cd	56,3
Ni	2125,1	Sn	277,2
Cu	5147,8	Sb	237,6
Zn	16169,3	W	620,4
		Bi	14,2
	нефте	продукты (кг)	
	- {	376441,9	
полиц	иютические аром	иатические углеводороды	(KT)
афталин	323,4	бензанирен	1,3
пирен	37,0	дибензантрацен	52,8
нтрацен	145,2	бенз(к)флуорантен	46,2
етрафен	13,2		

Примечание: жирным шрифтом выделены элементы, которые относятся к 1 классу опасности (чрезвычайно опасные).


Загрязнения в осадке ливневой канализации

проведена оценка содержания биодоступных форм металлов в осадке ливневой канализации по методике SBET (Simplified Bioaccessibility Extraction Test) метод экстракции, основанный на физиологии человека, принят в качестве стандартной процедуры для оценки потенциальной биодоступности.

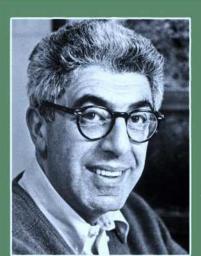
Наибольшую опасность для живых организмов представляют **As, Cd, Cu, Pb, Zn, Mn, Sr**, которые находятся в составе осадка в **биодоступных** формах, содержание которых достигает 59-95%. Содержание биодоступных форм металлов в осадках составило для **Ag**, Co, Ni - 28-40%; для **Cr**, Fe, Mo, Sb, Sn, V, W - от менее 1 до 16 %.

Проблема - загрязнением малых водотоков крупного промышленного центра тяжелыми металлами и углеводородами с последующим поступлением загрязняющих веществ в р.Волга.

Решение - аккумуляция взвешенных частиц водотоков на станциях очистки ливневой канализации с последующей утилизацией.

Перспективы применения природоподобных технологий для снижения диффузного поступления загрязняющих веществ с водосборов в водные объекты

Указы президента:


О развитии природоподобных технологий в Российской Федерации. (2.11.2023)

О стратегии научно - технологического развития России. (28.02.2024 г.№ 145.)

Природоподобные технологии в земледелии

Технологии, которые максимально близки к естественным процессам биосферы, минимально нарушали бы природные циклические структуры, в том числе структуры гидрологического цикла. Характеризуются более экономичными способами обработки почвы: частичным или полным отказом от отвальной вспашки, отсутствием вертикального перемешивания пахотного слоя, минимальным нарушением почвенного покрова сельскохозяйственными машинами и обязательным мульчированием почвы (no-till или mulch tillage) с целью сохранения почвенной влаги, уменьшения или ликвидации

эрозии почвы.

ЧЕТЫРЕ ЗАКОНА ЭКОЛОГИИ

1. Всё связано со всем

2. Всё должно куда-то уходить

3. Природа знает лучше

4. За всё приходится чем-то платить

Барри Коммонер (1917-2012) - американский биологи и эколог, один из основоположников современной экологической науки

Принцип максимального производства энтропии Г.Циглер

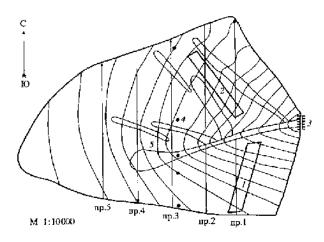
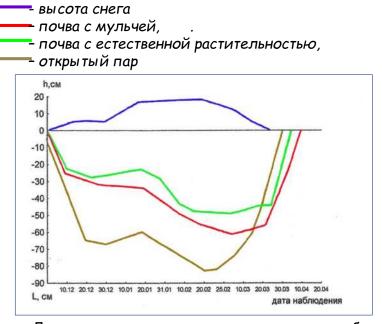
Принцип минимума производства энтропии И.Пригожин

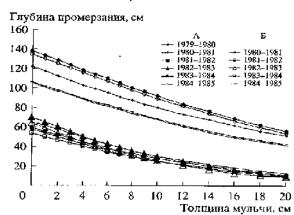
Теория диссипативных структур Физические законы экологии Е.М.Гусев

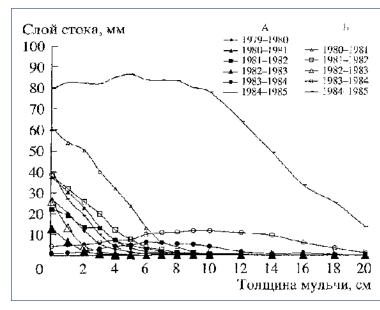
Оценка эффективности мульчирования и технологии No-till (минимальная безотвальная обработка почвы с осени)

- 1. Имитационное моделирование процессов формирования поверхностного весеннего склонового стока с использованием динамико-стохастической модели (ДСМ), разработанной на основе многолетних экспериментальных наблюдений на водобалансовых объектах Курской биосферной станции Института географии РАН за период 1979 1985 гг.
- 2. Всероссийский НИИ земледелия и защиты почв от эрозии РАСХН (ВНИИЗ и ЗПЭ) осуществлял крупномасштабный эксперимент на большом числе стоковых площадок с разным типом подстилающей поверхности по изучению влияния различных агротехнических приемов обработки почвы на изменение поверхностного весеннего склонового стока (ПВСС), эрозии почвы и обусловливающих их факторов.

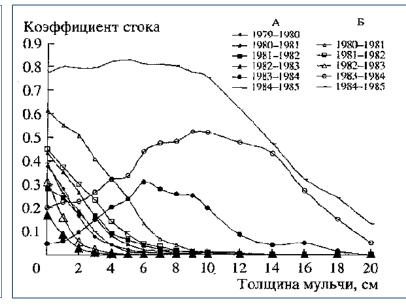
Единая база данных из 56 годопунктов для моделирования процессов формирования стока на разных типах подстилающей поверхности.


Схема экспериментального водосбора КБС ИГРАН – лога Панинского.

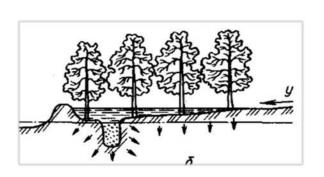


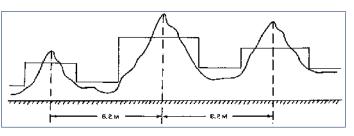
Влияние мульчирования на характеристики промерзания и весеннего поверхностного стока



Динамика высоты снежного покрова, см глубина промерзания почвы, см на опытных площадках Курской биосферной станции ИГ РАН в зимне - весенний периоды 1987/88 г

Зависимость весеннего склонового стока от мощности слоя мульчи из соломы


Зависимость коэффициента весеннего склонового стока от слоя мульчи из соломы.


Гидрологическая эффективность мульчирования почвы с осени на снижение диффузного выноса оценивается в 80 % [Ясинский С.В., ,2008].

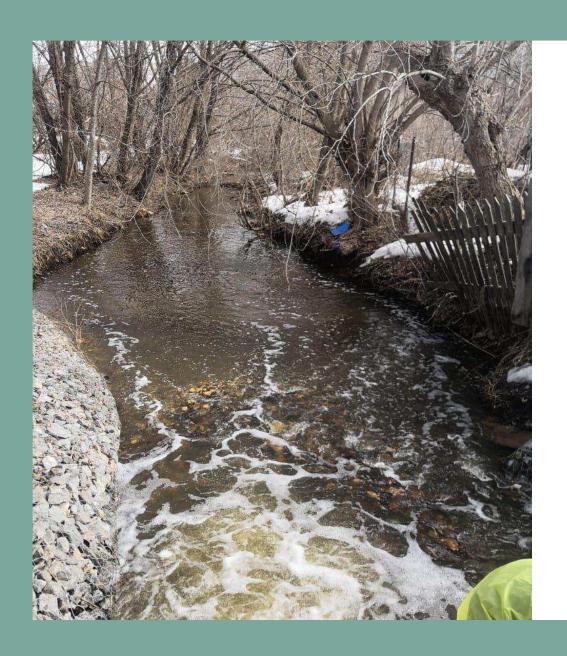
Однако в других источниках [хрисанов Н.И., 1993] указана эффективность около 30%.

Водоохранные мероприятия для территорий сельскохозяйственных угодий и ожидаемый эффект снижения выноса биогенных элементов

Водоохранное мероприятие	Сокращение потока загрязняющих веществ, %
Создание лесополос, усиленных валом - канавой	40
Оптимальное использование минеральных и органических удобрений	30
Создание кулис из высокостебельных растений	40
Минимальная безотвальная обработка	
почвы с ее мульчированием	
растительными остатками	не менее 30

Относительное уменьшение выноса при реализации разных водоохранных мероприятий, в % от разности современного и целевого выносов биогенных веществ водосборов рек Чебоксарского водохранилища

За **Целевой показатель** водоохранной деятельности принят диффузный вынос с характерных для региона природных ландшафтов, полученный имитационным моделированием **при сценариях минимального антропогенного влияния** на водосбор



1	Оптимальное использование минеральных и органических удобрений
	Минимальная безотвальная обработка почвы с осени с обязательным ее мульчированием растительными
2	остатками.
3	Создание кулис
4	Создание лесополос
5	Модернизация ливневой канализации в городах
6	Организация септиков в сельских населенных пунктах (100% охват)
7	Организация септиков в сельских населенных пунктах (50% охват)
8	Одновременное создание лесополос и применение кулис

Итоги

- В России наиболее эффективно применение такого комплекса природоподобных технологий на черноземных почвах в засушливых районах страны: Центрально-Черноземной зоны, Северного Кавказа, Поволжья, Урала, Западной и Восточной Сибири.
- Результаты экспериментальных исследований, выполненных во многих научных учреждениях России, в том числе и в Институте географии РАН, убедительно показывают, что нужно более активно внедрять технологию No -till и другие природоподобные технологии в практику сельского хозяйства для снижения склонового стока, диффузного загрязнения водных ресурсов и решения многих других водоохраных проблем страны.

Спасибо за внимание!

