

Инструменты искусственного интеллекта в гидрометеорологии: возможности и сдержанный оптимизм относительно перспектив

С. А. Солдатенко

ПОНИМАЙТЕ ИИ ТАКИМ, КАКОЙ ОН ЕСТЬ, А НЕ ТЕМ, ЧЕМ ОН МОЖЕТ СТАТЬ

Дэвид Карпф

Определение

Словосочетание «Искусственный интеллект» – многозначное метафорическое понятие. Термин является крайне неудачным. Единое трактование отсутствует.

Противоречивость в трактовке существа ИИ обусловлена разным смысловым содержанием термина «интеллект», используемым в различных областях знания. Многочисленные трактовки термина ИИ можно разделить на два больших класса:

- первый класс рассматривает ИИ в контексте научной дисциплины;
- второй класс в контексте технической системы.

В контексте научной дисциплины ИИ – это междисциплинарное научное направление, объединяющее математику, кибернетику, компьютерные науки, психологию, физиологию, нейробиологию, философию сознания и др. Для всех перечисленных областей научного знания характерно использование междисциплинарных терминов, имеющих различное смысловое содержание, зависящее от сферы использования. Обычно ИИ представляют как научное направление в информатике (computer science)

В контексте технической системы ИИ – это комплекс технологических решений, позволяющих имитировать когнитивные функции человека.

Интерес к ИИ

Сегодня ИИ проникает во многие сферы человеческой деятельности, включая гидрометеорологическую деятельность.

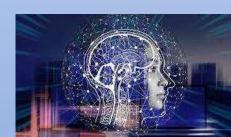
Области применения ИИ широки и разнообразны: везде где возникает необходимость сбора, обработки и систематизации больших объемов данных с целью повышения эффективности планирования и прогнозирования, находит пррменение ИИ.

Имеются две основные причины, обуславливающие стремительный рост интереса к ИИ:

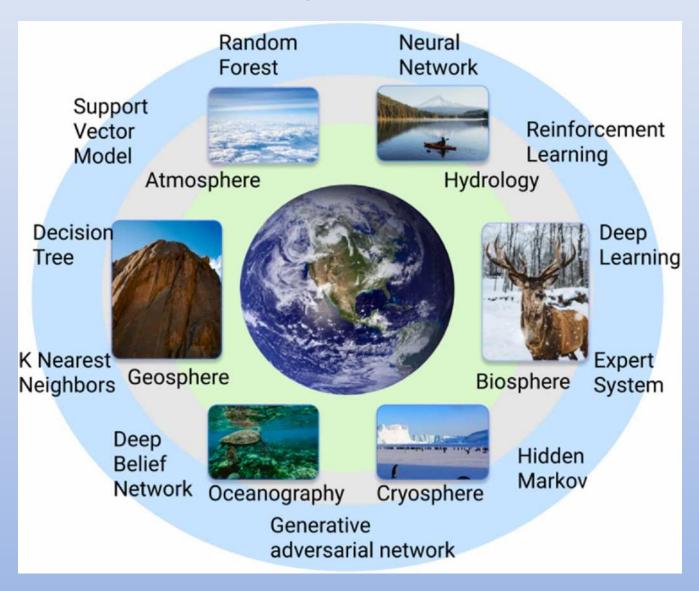
- лавинообразно нарастающий объем информации;
- наличие вычислительных ресурсов, способных в достаточно короткие сроки эту информацию обработать.

В 2019 г. в нашей стране была принята «Национальная стратегия развития искусственного интеллекта на период до 2030 года. Главным инициатором и координатором работ по ее разработке выступил Сбербанк.

В этом же году был сформирован альянс (Al-Russia Alliance) для координации деятельности деловых кругов и научного сообщества с целью развития ИИ и реализации Национальной стратегии.


ИИ в науках о Земле

Современные модели искусственного интеллекта находятся примерно на младенческом уровне развития. Их взросление и понимание истинной картины мира сдерживается человеческим мышлением, логикой и языком, на которых эти модели обучались.


В экспертной среде существует устойчивое мнение и определенная уверенность в том, что ИИ может сыграть весьма значимую роль в совершенствовании методов прогнозирования состояния окружающей природной среды и повышении достоверности прогнозов погоды, гидрологического режима, глобальных и региональных изменений климата.

Это мнение основывается на феноменальных достижениях ИИ и, в частности, глубокого обучения в области компьютерного зрения и обработки естественного языка, обусловивших появление многочисленных разработок и публикаций, касающихся применения технологий ИИ в науках о Земле, в том числе в метеорологии, климатологии и гидрологии.

ИИ в науках о Земле

ИИ, прогноз погоды и климата

Технологии ИИ применяются во всей технологической прогностической цепочке:

- контроль качества данных наблюдений в реальном времени
- агрегирование данных из различных источников
- коррекция ошибок
- усвоение данных
- генерация линейного или сопряженного кода
- разработка улучшенных схем параметризации
- построение суррогатных прогностических моделей
- изучение базовых уравнений
- эмуляция компонентов моделей
- разработка моделей низкого порядка
- постобработка и распространение данных о погоде и климате
- корректировка продуктов прогнозирования в реальном времени
- количественная оценка неопределенностей
- корректировка долгосрочных прогнозов погоды
- разработка индивидуальных продуктов по заказам потребителей

Прогноз погоды и ИИ

Прогноз погоды – задача технологическая

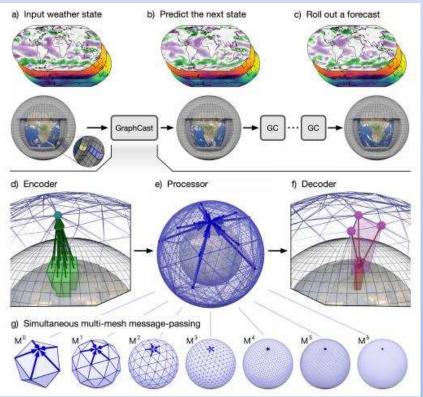
(В.П. Дымников)

Наукастинг: в принципе проблема решена с использование глубокого обучения (нейронных сетей). Составляются детерминированные и вероятностные прогнозы видимости, осадков, ветра, турбулентности, тумана.

<u>Краткосрочный/среднесрочный прогноз</u>: Google (Graphcast), Huaway (Pangu-Weather), NVIDIA (FourCastNetv), IBM (Prithvi WxC), Fudan University, Shanghai (FuXi ML), ECMWF (AIFS)

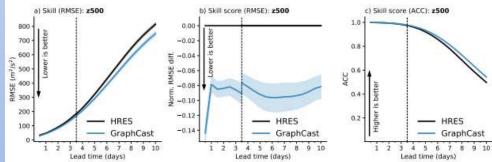
Долгосрочный прогноз/моделирование климата:

- гидродинамические модели: Google (NeuralGCM)
- физико-статистические: прогноз льда (IceNet)


Здесь имеет место тесное взаимодействие специалистов в предметной области и ИИ.

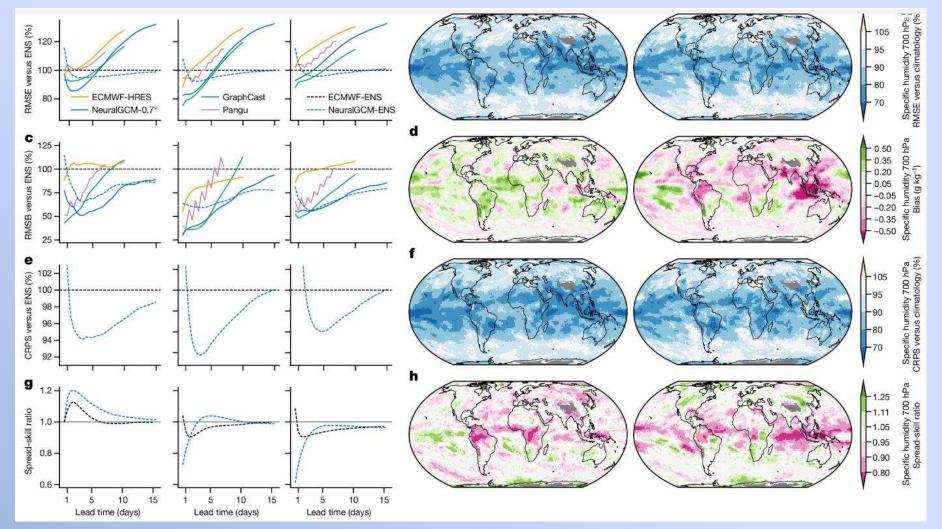
GraphCast

Surface variables (5)	Atmospheric variables (6)	Pressure levels (37)
2-meter temperature (2T)	Temperature (T)	1, 2, 3, 5, 7, 10, 20, 30, 50, 70,
10 metre u wind component (10 u)	U component of wind (u)	100, 125, 150, 175, 200, 225,
10 metre v wind component (10v)	V component of wind (v)	250, 300, 350, 400, 450, 500,
Mean sea-level pressure (MSL)	Geopotential (z)	550, 600, 650, 700, 750, 775,
Total precipitation (TP)	Specific humidity (Q)	800, 825, 850, 875, 900, 925,
	Vertical wind speed (w)	950, 975, 1000

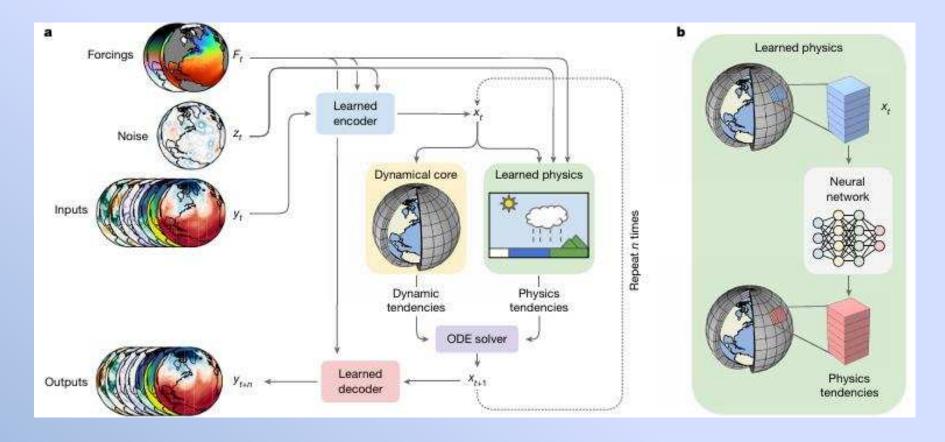

Графовые нейронные сети (encoder – decoder конфигурация) Нейронный фурье-оператор Трансформеры

Разрешение 0.25°

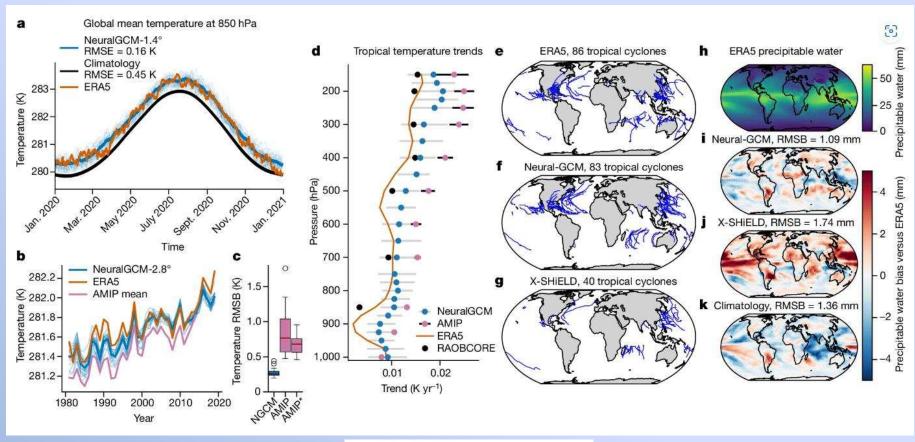
Уровней 37


Кол-во строк кода 5,417 lines

Модель NOAA 376578


Результаты ЧПП

Структура NeuralGCM



Разрешение: 0.7°, 1.4°, 2.8° (TL255, TL127, TL63)

Grid name	Longitude nodes	Latitude nodes	Max total wavenumber
TL63	128	64	63
TL127	256	128	127
TL255	512	256	255

Моделирование климата

СПАСИБО ЗА ВНИМАНИЕ!